Journal of Materials Science

, Volume 40, Issue 13, pp 3347–3353 | Cite as

Characterization of low angle grain boundaries in yttrium orthovanadate

  • Joel B. Lebret
  • M. Grant NortonEmail author
  • David F. Bahr
  • David P. Field
  • Kelvin G. Lynn


Single crystals of Nd:YVO4 grown with the Czochralski technique frequently exhibit light scattering defects that are detrimental to their lasing and optical properties. Defects in the form of low angle grain boundaries have been characterized in what are nominally ‘single crystals’. The misorientation angles of the boundaries were determined to be typically < 1°, which corresponds to formation energies of approximately 1 Jm−2. It was found that dislocations generated during crystal growth and cooling have enough mobility in certain growth directions to form low angle grain boundaries through polygonization. Despite the relatively high energies the boundaries were stable, being immobile at annealing temperatures up to 97% of the melting point (2083 K). Suggestions are made to reduce or eliminate polygonization, including the addition of atoms with a size either much larger or smaller than Y3+.


Polymer Melting Point Optical Property Crystal Growth Yttrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. R. O’CONNOR, Appl. Phys. Lett. 9 (1966) 407.Google Scholar
  2. 2.
    P. P. YANEY and L. G. DE SHAZER, J. Opt. Soc. Am. 66 (1976) 1405.Google Scholar
  3. 3.
    A. W. TUCKER, M. BIRNBAUM, C. L. FINCHER and L. G. DE SHAZER, J. Appl. Phys. 47 (1976) 232.Google Scholar
  4. 4.
    R. A. FIELDS, M. BIRNBAUM and C. L. FINCHER, Appl. Phys. Lett. 51 (1987) 1885.Google Scholar
  5. 5.
    Y. ZHANG, B. FLUEGAL and A. MASCARENHAS, Phys. Rev. Lett. 91 (2003) 157404.Google Scholar
  6. 6.
    H. M. DESS and S. R. BOLIN, Trans. TMS-AIME 239 (1967) 359.Google Scholar
  7. 7.
    T. SHONAI, M. HIGUCHI and K. KODAIRA, Mater. Res. Bull. 35 (2000) 225.Google Scholar
  8. 8.
    C. GOUTAUDIER, F. S. ERMENEUX, M. T. COHEN-ADAD, R. MONCORGE, M. BETTINELLI, and E. CAVALLI, Mater. Res. Bull. 33 (1998) 1457.Google Scholar
  9. 9.
    T. KATSUMATA, H. TAKASHIMA, H. OZAWA, K. MATSUURA and Y. NOBE, J. Cryst. Growth 148 (1995) 193.Google Scholar
  10. 10.
    S. ERDEI, B. M. JIN, F. W. AINGER, B. KESZEI, J. VANDLIK and A. SUVEGES, J. Cryst. Growth 172 (1997) 466.Google Scholar
  11. 11.
    R. C. ROPP, Mat. Res. Bull. 10 (1975) 271.Google Scholar
  12. 12.
    T. KATSUMATA, H. TAKASHIMA, T. MICHINO and Y. NOBE, Mat. Res. Bull. 29 (1994) 1247.Google Scholar
  13. 13.
    L. SANGALETTI, B. ALLIERI, L. E. DEPERO, M. BETTINELLI, K. LEBBOU and R. MONCORGE, J. Cryst. Growth 198/199 (1999) 454.Google Scholar
  14. 14.
    B. Q. HU, Y. Z. ZHANG, X. WU and X. L. CHEN, J. Cryst. Growth 226 (2001) 511.Google Scholar
  15. 15.
    D. E. EAKINS, J. B. LEBRET, M. G. NORTON and D. F. BAHR, J. Cryst. Growth 266 (2004) 411.Google Scholar
  16. 16.
    W.T. READ, in “Dislocations in Crystals” (McGraw-Hill, New York, 1953) p. 155.Google Scholar
  17. 17.
    X. PENG, A. ASUNDI, Y. CHEN and Z. XIONG, Appl. Opt. 40 (2001) 1396.Google Scholar
  18. 18.
    H. G. VAN BUEREN, in “Imperfections in Crystals” (North Holland Publishing Company, Amsterdam, 1961) p. 443.Google Scholar
  19. 19.
    L. QIN, X. MENG, J. ZHANG, L. ZHU, H. ZHANG, B. XU and H. JIANG, J. Cryst. Growth 242 (2002) 183.Google Scholar
  20. 20.
    T. SHONAI, M. HIGUCHI, K. KODAIRA, T. OGAWA, S. WADA and H. MACHIDA, J. Cryst. Growth 241 (2002) 159.Google Scholar
  21. 21.
    B. COCKAYNE, B. LENT, J. S. ABELL and I. R. HARRIS, J. Mater. Sci. 8 (1973) 871.Google Scholar
  22. 22.
    B. COCKAYNE, B. LENT, J. S. ABELL and P. M. MARQUIS, J. Mater. Sci. 10 (1975) 1874.Google Scholar
  23. 23.
    H. KLAPPER and H. KUPPERS, Acta Cryst. A 29 (1973) 495.Google Scholar
  24. 24.
    M. G. BLANCHIN and G. FONTAINE, Phys. Stat. Sol. A 29 (1975) 491.Google Scholar
  25. 25.
    M. HIGUCHI, T. HOSOKAWA and S. KIMURA, J. Cryst. Growth 112 (1991) 354.Google Scholar
  26. 26.
    H. J. ZHANG, L. ZHU, X. L. MENG, Z. H. YANG, C. Q. WANG, W. T. YU, Y. T. CHOW and M. K. LU, Cryst. Res. Technol. 34 (1999) 1011.Google Scholar
  27. 27.
    M. HIGUCHI, K. HATTA, J. TAKAHASHI, K. KODAIRA, H. KANEDA and J. SAITO, J. Cryst. Growth 208 (2000) 501.Google Scholar
  28. 28.
    M. HIGUCHI and K. KODAIRA, J. Cryst. Growth 123 (1992) 495.Google Scholar
  29. 29.
    M. HIGUCHI, J. TAKAHASHI and K. KODAIRA, J. Cryst. Growth 125 (1992) 125.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Joel B. Lebret
    • 1
  • M. Grant Norton
    • 1
    Email author
  • David F. Bahr
    • 1
  • David P. Field
    • 1
  • Kelvin G. Lynn
    • 1
  1. 1.School of Mechanical and Materials EngineeringWashington State UniversityPullmanUSA

Personalised recommendations