Journal of Materials Science

, Volume 40, Issue 13, pp 3361–3366 | Cite as

Power law indentation creep of Sn-5% Sb solder alloy

  • A. R. Geranmayeh
  • R. MahmudiEmail author


Creep behavior of the lead-free Sn-5%Sb solder alloy was studied by long time Vickers indentation testing at room temperature. Based on the steady-state power law creep relationship, the stress exponents were determined for the cast and wrought materials in the homogenized and unhomogenized conditions. The stress exponent values of 4.5 and 12, depending on the processing route of the material, are in good agreement with those reported for the same material in conventional creep testing at room temperature. The results are discussed on the basis of the microstructural features developed during different processing routes of the material.


Polymer Microstructural Feature Creep Testing Creep Behavior Stress Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. L. MURTY, F. M. HAGGAG and R. K. MAHIDHARA, J. Elec. Mater. 26 (1997) 839.Google Scholar
  2. 2.
    P. T. PIANCO and D. R. FREAR, JOM 45 (1993) 14.Google Scholar
  3. 3.
    R. J. MCCABE and M. E. FINE, Met. Mater. Trans. 33A (2002) 1531.Google Scholar
  4. 4.
    H. MAVOORI, JOM 52 (2000) 29.Google Scholar
  5. 5.
    R. J. MCCABE and M. E. FINE, J. Elec. Mater. 31 (2002) 1276.Google Scholar
  6. 6.
    N. WADE, K. WU, J. KUNI, S. YAMADA and K. MIYAHARA, J. Elec. Mater. 30 (2001) 1228.Google Scholar
  7. 7.
    M. FUJIWARA and M. OTSUKA, Mater. Sci. Eng. A 319–321 (2001) 929.Google Scholar
  8. 8.
    R. MAHMUDI, R. ROUMINA and B. RAEISINIA, Mater. Sci. Eng. A 382 (2004) 15.Google Scholar
  9. 9.
    R. ROUMINA, B. RAEISINIA and R. MAHMUDI, Scripta Mater. 51 (2004) 497.Google Scholar
  10. 10.
    T. R. G. KUTTY, C. GANGULY and D. H. SASTRY, Scripta Mater. 34 (1996) 1833.Google Scholar
  11. 11.
    A. DE LA TORRE, P. ADEVA and M. ABALLE, J. Mater. Sci. 26 (1991) 4351.Google Scholar
  12. 12.
    G. SHARMA, R. V. RAMANUJAN, T. R. G. KUTTY and G. P. TIWARI, Mater. Sci. Eng. A 278 (2000) 106.Google Scholar
  13. 13.
    G. CSEH, N. Q. CHINH, P. TASNADI and A. JUHASZ, J. Mater. Sci. 32 (1997) 5107.Google Scholar
  14. 14.
    P. M. SARGENT and M. F. ASHBY, Mater. Sci. Tech. 8 (1992) 594.Google Scholar
  15. 15.
    B. N. LUCAS and W. C. OLIVER, Metall. Mater. Trans. 30A (1999) 601.Google Scholar
  16. 16.
    T. G. LANGDON, Mater. Sci. Eng. A 283 (2000) 266.Google Scholar
  17. 17.
    T. O. MULHEARN and D. TABOR, J. Inst. Metal. 89 (1960) 7.Google Scholar
  18. 18.
    R. ROUMINA, B. RAEISINIA and R. MAHMUDI, J. Mater. Sci. Letts. 22 (2003) 1435.Google Scholar
  19. 19.
    B. WALSER and O. D. SHERBY, Scripta Metall. 16 (1982) 213.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringAzad UniversityTehranIran
  2. 2.Department of Metallurgical and Materials Engineering, Faculty of EngineeringUniversity of TehranTehranIran

Personalised recommendations