Advertisement

Journal of Materials Science

, Volume 40, Issue 13, pp 3395–3402 | Cite as

Development of hybrid Mg/Al2O3 composites with improved properties using microwave assisted rapid sintering route

  • W. L. E. Wong
  • S. Karthik
  • M. GuptaEmail author
Article

Abstract

In the present study, hybrid magnesium based composites reinforced with an equivalent of 5 vol.% of micron and nano-sized Al2O3 particulates were synthesized using powder metallurgy technique incorporating an innovative microwave assisted rapid sintering technique. Microstructural characterization revealed near equiaxed grain morphology and the presence of minimal porosity in all the samples. Mechanical characterization studies revealed that the coupled addition of micron and nano-sized particulate reinforcements in magnesium matrix leads to a significant increase in hardness, elastic modulus, 0.2% yield strength, ultimate tensile strength and a decrease in ductility when compared to pure magnesium. Tensile testing results further revealed an increase in elastic modulus and ductility with no apparent change in the 0.2% yield strength and ultimate tensile strength of the hybrid composites upon the addition of nano-sized alumina particulates from 0.5 to 0.75 volume percent. With an increase in nano-sized alumina particulates from 0.75 to 1%, the overall mechanical properties of the hybrid composites were enhanced with an increase being observed in the elastic modulus, 0.2% yield strength and ductility of the composites. An attempt is made in this study to investigate the feasibility of the processing methodology and to study the effects of the addition of particulate reinforcements of different sizes on the microstructure, physical and mechanical properties of magnesium.

Keywords

Elastic Modulus Ductility Yield Strength Ultimate Tensile Strength Hybrid Composite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. J. LLYOD, Int. Mater. Rev. 39 (1994) 1.Google Scholar
  2. 2.
    A. LUO, Metal. Mater. A 26 (1995) 2445.Google Scholar
  3. 3.
    M. GUPTA, M. O. LAI and D. SARAVANARANGANTHAN, J. Mater. Sci. 35 (2000) 2155.Google Scholar
  4. 4.
    B. L. MORDIKE and K. U. KAINER, in “Magnesium Alloys and Their Applications” (Werkstoff-Insformations gesellschaft, Frankfu, Germany, 1998).Google Scholar
  5. 5.
    R. OAKLEY, R. F. COCHRANE and R. STEVENS, Key. Eng. Mater. 104 (1995) 387.Google Scholar
  6. 6.
    I. A. IBRAHIM, F. A. MOHAMED and E. J. LAVERNIA, J. Mat. Sci. 26 (1991) 1137.Google Scholar
  7. 7.
    R. M. GERMAN, in “Sintering Theory and Practice” (John Wiley & Sons Inc, New York, 1996) p. 2, 404.Google Scholar
  8. 8.
    R. M. GERMAN, in “Powder Metallurgy Science” (Metal Powder Industries Federation, USA, 1984).Google Scholar
  9. 9.
    J. P. SCHAFFER, A. SAXENA, S. D. ANTOLOVICH, T. H. SANDERS J. R. and S. B. WARNER, in “The Science and Design of Engineering Materials,” 2nd ed. (McGraw Hill, 1999).Google Scholar
  10. 10.
    R. ROY, D. AGRAWAL, J. CHENG and S. GEDEVANISHVILI, Nature 399 (1999) 668.Google Scholar
  11. 11.
    D. AGRAWAL, Mater. World 7 (1999) 672.Google Scholar
  12. 12.
    R. ROY, J. CHENG, and D. K. AGRAWAL, US Patent No. 6,365,885 B1, April 2, 2002.Google Scholar
  13. 13.
    S. F. HASSAN and M. GUPTA, Mat. Sci. Eng. A-Struct.in press (2004).Google Scholar
  14. 14.
    S. F. HASSAN and M. GUPTA, J. Alloy. Compd. 345 (2002) 246.Google Scholar
  15. 15.
    S. F. HASSAN and M. GUPTA, J. Alloy. Compd. 335 (2002) L10.Google Scholar
  16. 16.
    S. F. HASSAN and M. GUPTA, Mat. Res. Bull. 37 (2002) 377.Google Scholar
  17. 17.
    J. SCHRÖDER and K. U. KAINER, Mater. Sci. Eng. A-Struct 135 (1991) 33.Google Scholar
  18. 18.
    X. N. ZHANG and R. J. WU, Key. Eng. Mater. 249 (2003) 217.Google Scholar
  19. 19.
    S. K. THAKUR, B. K. DHINDAW, N. HORT and K. U. KAINER, Mater. Sci. Forum. 426–432 (2003) 2027.Google Scholar
  20. 20.
    M. GUPTA, C. LANE and E. J. LAVERNIA, Scr. Metall. Mater. 26 (1992) 825.Google Scholar
  21. 21.
    M. R. KRISHNADEV, R. ANGERS, C. G. KRISHNADAS NAIR and G. J. HUARD, J. Met. 45 (1993) 52.Google Scholar
  22. 22.
    A. BUCH, in “Pure Metals Properties” (ASM International, Materials Park, Ohio, USA, 1999) p. 20.Google Scholar
  23. 23.
    Website: http://www.ceramics.nist.gov/srd/summary/scdaos.htm, last accessed Oct 2004.Google Scholar
  24. 24.
    A. L. GEIGER and M. JACKSON, Adv. Mat. Proc. 136(7) (1989) 23.Google Scholar
  25. 25.
    S. F. HASSAN and M. GUPTA, Mat. Sci. Tech. in press (2004).Google Scholar
  26. 26.
    M. GUPTA and M. K. SURAPPA, Key. Eng. Mat. 104–107 (1995) 259.Google Scholar
  27. 27.
    A. R. BOCCACINI, G. ONDRACEK, P. MAZILU and D. WINDELBEG, J. Mech. Behav. Mater. 4 (1993) 11 9.Google Scholar
  28. 28.
    G. E. FOUGERE, L. RIESTER, M. FERBER, J. R. WEERTMAN and R. W. SIEGEL, Mat. Sci. Eng. A—Struct 204 (1995) 1.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational University of SingaporeSingapore

Personalised recommendations