Advertisement

Journal of Materials Science

, Volume 40, Issue 13, pp 3409–3413 | Cite as

Ti3SiC2/TiC composites prepared by PDS

  • S. KonoplyukEmail author
  • T. Abe
  • T. Uchimoto
  • T. Takagi
Article

Abstract

Synthesis of composite materials with improved mechanical properties is considered. Pulse discharge sintering (PDS) technique was utilized for consolidation and synthesis of double phase Ti3SiC2/TiC composites from the initial powders TiH2/SiC/TiC. Scanning electron microscopy with energy-dispersive spectrometry (SEM with EDS) and X-ray diffractometry (XRD) were exploited for the analysis of the microstructure and composition of the sintered specimens. Mechanical tests showed high bending and compression strength and low Vickers hardness of Ti3SiC2-rich specimens. The reasons of this behaviour are in the features of the textured microstructure of Ti3SiC2 phase.

Keywords

Polymer Microstructure Microscopy Electron Microscopy Scan Electron Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. W. BARSOUM, T. EL-RAGHY and L. OGBUJI, J. Electrochemical Soc. 144 (1997) 2508.Google Scholar
  2. 2.
    M. W. BARSOUM and T. EL-RAGHY, J. Amer. Ceram. Soc. 79 (1996) 1953.Google Scholar
  3. 3.
    J. LIS, Y. MIYAMOTO, R. PAMPUCH and K. TANIHATA, Mater. Lett. 22 (1995) 163.Google Scholar
  4. 4.
    Z. M. SUN, H. HASHIMOTO, Z. F. ZHANG, S. L. YANG and T. ABE, Mat. Res. Soc. Symp. Proc. 755 (2003) 179.Google Scholar
  5. 5.
    S. L. YANG, Z. M. SUN, H. HASHIMOTO and T. ABE, J. Alloys Comp. 358 (2003) 168.Google Scholar
  6. 6.
    S. L. YANG, Z. M. SUN, H. HASHIMOTO and T. ABE, J. Eur. Ceram. Soc. 23 (2003) 3147.Google Scholar
  7. 7.
    J.-O. ZHU, B.-C. MEI, X.-W. XU and J. LIU, Scripta Mater. 49 (2003) 693.Google Scholar
  8. 8.
    S. B. LI, J. X. XIE, L. T. ZHANG and L. F. CHENG, Mat. Sci. Technol. 19 (2003) 1442.Google Scholar
  9. 9.
    Z. F. ZHANG, Z. M. SUN and H. HASHIMOTO, Metall. Mater. Trans. A 33 (2002) 3321.Google Scholar
  10. 10.
    E. WU, E. H. KISI, S. J. KENNEDY and A. J. STUDER, J. Amer. Ceram. Soc. 84 (2001) 2281.Google Scholar
  11. 11.
    Z. F. ZHANG, Z. M. SUN, H. HASHIMOTO and T. ABE, Scripta Mater. 45 (2001) 1461.Google Scholar
  12. 12.
    K. TANG, C. WANG, X. XU and Y. HUANG, Mater. Lett. 55 (2002) 50.Google Scholar
  13. 13.
    K. TANG, C. WANG, Y. HUANG and X. XU, J. Alloys Comp. 329 (2001) 136.Google Scholar
  14. 14.
    N. F. GAO, J. T. LIB, D. ZHANG and Y. MIYAMOTO, J. Eur. Ceram. Soc. 22 (2002) 2365.Google Scholar
  15. 15.
    Z. F. ZHANG, Z. M. SUN and H. HASHIMOTO, Adv. Eng. Mater. 4 (2002) 864.Google Scholar
  16. 16.
    L. H. HO-DUC, T. EL-RAGHY and M. W. BARSOUM, J. Alloys Comp. 350 (2003) 303.Google Scholar
  17. 17.
    Y. ZHOU and Z. SUN, J. Matter. Sci. 35 (2000) 4343.Google Scholar
  18. 18.
    N. F. GAO, Y. MIYAMOTO and D. ZHANG, J. Mater. Sci. 34 (1999) 4385.Google Scholar
  19. 19.
    T. RUDNIK and J. LIS, Arch. Metall. 42 (1997) 59.Google Scholar
  20. 20.
    T. EL-RAGHY, A. ZAVALIANGOS, M. W. BARSOUM and S. KALIDINIDI, J. Amer. Cer. Soc. 82 (1999) 2855.Google Scholar
  21. 21.
    W. SUN, D. J. DCOSTA, F. LIN and T. EL-RAGHI, J. Mater. Process. Technol. 127 (2002) 343.Google Scholar
  22. 22.
    N. F. GAO, Y. MIYAMOTO and D. ZHANG, Mater. Lett. 55 (2002) 61.Google Scholar
  23. 23.
    B. J. KOOI, R. J. POPPEN, N. J. M. CARVALHO, J. TH. M. DE HOSSON and M. W. BARSOUM, Acta Mater. 51 (2003) 2859.Google Scholar
  24. 24.
    S. LI, J. XIE, J. ZHAO and L. ZHANG, Mater. Lett. 57 (2002) 119.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Innovation Plaza MiyagiJapan Science and Technology AgencyAoba-ku, SendaiJapan
  2. 2.Institute of Fluid ScienceTohoku UniversityAoba-ku, SendaiJapan

Personalised recommendations