Advertisement

Multi-objective Compromise Allocation in Multivariate Stratified Sampling Using Extended Lexicographic Goal Programming with Gamma Cost Function

  • Yousaf Shad Muhammad
  • Javid Shabbir
  • Ijaz Husain
  • Mitwali Abd-el.Moemen
Article

Abstract

In the present paper, a new Gamma cost function is proposed for an optimum allocation in multivariate stratified random sampling with linear regression estimator. Extended lexicographic goal programming is used for solution of multi-objective non-linear integer allocation problem. A real data set is used to illustrate the application.

Keywords

Multivariate stratified sampling Compromise allocation Multi-objective programming Nonlinear cost function Lexicographic goal programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ansari, A.H., Najmussehar, Ahsan, M.J.: On multiple response stratified random sampling design. J. Stat. Sci. Kolkata, India 1(1), 45–54 (2009)Google Scholar
  2. 2.
    Bethel, J.: An optimum allocation algorithm for multivariate surveys. Proc. Surv. Res. Methods Sect, Am. Stat. Assoc, 209–212 (1985)Google Scholar
  3. 3.
    Beardwood, J., Halton, J.H., Hammersley, J.M.: The shortest path through many points. Math. Proc. Camb. Philos. Soc 55, 299–327 (1959)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Charnes, A., Cooper, W.W.: Management models and industrial applications of linear programming. John Wiley and Sons, New York (1961)MATHGoogle Scholar
  5. 5.
    Chromy, J.R.: Design optimization with multiple objectives. Proc. Surv. Res. Methods Sect., Am. Stat. Assoc, 194–199 (1987)Google Scholar
  6. 6.
    Cochran, W.G.: Sampling techniques. John Wiley, New York (1977)MATHGoogle Scholar
  7. 7.
    Dalenius, T.: The problem of optimum stratification-II. Scand. Actuar. j. 33, 203–213 (1950)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dalenius, T.: Sampling in Sweden: contributions to the methods and theories of sample survey practice. Almqvist and Wiksell, Stockholm (1957)MATHGoogle Scholar
  9. 9.
    Folks, J.L., Antle, C.E.: Optimum allocation of sampling units to strata when there are R responses of interest. J. Am. Sta.t Assoc. 60, 225–233 (1965)MathSciNetMATHGoogle Scholar
  10. 10.
    Ghosh, S.P.: A note on stratified random sampling with multiple characters. Calcutta Stat. Assoc. Bull 8, 81–89 (1958)Google Scholar
  11. 11.
    Hiller, F.S., Lieberman, G.J.: Introduction to operation research. McGRAW-Hill, Inc, New York (1995)Google Scholar
  12. 12.
    Hogg, R.V., Craig, A.T.: (1978) Introduction to Mathematical Statistics, 4th edition, New York: Macmillan (1978)Google Scholar
  13. 13.
    Holmberg, A.: A multiparameter perspective on the choice of sampling design in surveys. Stat. Transit. 5(6), 969–994 (2002)Google Scholar
  14. 14.
    Jahan, N., Khan, M.G.M., Ahsan, M.J.: A generalized compromise allocation. J. Indian Stat. Assoc 32, 95–101 (1994)Google Scholar
  15. 15.
    Jahan, N., Khan, M.G.M., Ahsan, M.J.: Optimum compromise allocation using dynamic programming. Dhaka Univ. J. Sci 49(2), 197–202 (2001)Google Scholar
  16. 16.
    Khan, M.G.M., Khan, E.A., Ahsan, M.J.: An optimal multivariate stratified sampling design using dynamic programming. Aust. N. Z. J. Stat 45(1), 107–113 (2003)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Khan, M.G.M., Khan, E.A., Ahsan, M.J.: Optimum allocation inmultivariate stratified sampling in presence of non-response. J. Ind. Soc. Agric, Stat 62(1), 42–48 (2008)MathSciNetGoogle Scholar
  18. 18.
    Khan, E.A., Khan, M.G.M., Ahsan, M.J.: Optimum stratification: a mathematical programming approach. Calcutta Stat. Assoc. Bull 52, 323–333 (2002)MathSciNetGoogle Scholar
  19. 19.
    Khan, M.G.M., Maiti, T., Ahsan, M.J.: An optimal multivariate stratified sammpling design using auxilary information,an integer solution using goal programming approach. J. Off. Stat 26(4), 695–708 (2010)Google Scholar
  20. 20.
    Krysan, M., Schuman, H., Scott, L.J., Beatty, P.: Response rates and response content in mail versus face-to-face surveys. Public Opinion Quarterly 58, 381–399 (1994)CrossRefGoogle Scholar
  21. 21.
    Neyman, J.: On the two different aspect of representative method:the method of stratified sampling and method of purposive selection. J. Roy. Statist. Soc 97(4), 558–625 (1934)CrossRefGoogle Scholar
  22. 22.
    Romero, R.: Extended lexicographic goal programming: a unifying approach. Omega 29, 63–71 (2001)CrossRefGoogle Scholar
  23. 23.
    Ross, Sheldon M.: Introduction to probability and statistics for engineers and scientists (4th ed.). Associated Press, ISBN:978-0-12-370483-2 (2009)Google Scholar
  24. 24.
    Singh, H.P., Kumar, S.: A regression approach to the estimation of the finite population mean in the presence of non-response. Aust. N. Z. J. Stat. 50(4), 395–408 (2008)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Taha, H.A.: Operations research: an introduction. Prentice hall; 9 edition, ISBN-13: 978-0132555937 (2010)Google Scholar
  26. 26.
    Tamiz, M, Jones, D.F, Romero, C.: Goal programming for decision making: an overview of the current state-of-the- art. Eur. J. Oper. Res. 111, 569–81 (1998)CrossRefMATHGoogle Scholar
  27. 27.
    Tschuprow, A.A.: On the mathematical expection of the moments of frequency distributions in the case of correlated observations. Metron 2, 461–493, 646–683 (1923)Google Scholar
  28. 28.
    Varshney, R., Ahsan, M.J, Khan, M.G.M.: An optimum multivariate stratified sampling design with nonresponse: a lexicographic goal programming approach. J.Math. Model. Alog 10, 393–405 (2011)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Varshney, R., Najmussehar, Ahsan, M.J.: Estimation of more than one parameters in stratified sampling with fixed budget. Math. Meth. Oper. Res 75(2), 185–197 (2012)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Winston, W.L.: Operations Research: Application and Algorithm. Cengage Learning; 4 edition, ISBN-13: 978-0534380588 (2003)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Yousaf Shad Muhammad
    • 1
    • 2
  • Javid Shabbir
    • 1
    • 2
  • Ijaz Husain
    • 1
    • 2
  • Mitwali Abd-el.Moemen
    • 1
    • 2
  1. 1.Department of StatisticsQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.College of Law and Political ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations