A Higher-Order Hidden Markov Chain-Modulated Model for Asset Allocation



This paper presents an analysis of asset allocation strategies when the asset returns are governed by a discrete-time higher-order hidden Markov model (HOHMM), also called the weak hidden Markov model. We assume the drifts and volatilities of the asset returns switch over time according to the state of the HOHMM, in which the probability of the current state depends on the information from previous time-steps. The “switching” and “mixed” strategies are studied. We use a multivariate filtering technique in conjunction with the EM algorithm to obtain estimates of model parameter at a given time. This, in turn, aids investors in determining the optimal investment strategy for the next time step. Numerical implementation is applied to data on Russell 3000 value and growth indices. We benchmark the respective performances of portfolio using three classical investment measures.


Markov chain Regime-switching Filtering Investment strategy Portfolio performance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abell, M.L., Braslton, J.P.: Introductory Differential Equations: With Boundary Value Equations. Academic Press, California (2009)Google Scholar
  2. 2.
    Ammann, M., Verhofen, M.: The effect of market regimes on style allocation. Financ. Markets Portf. Mgmt 20, 309–337 (2006)CrossRefGoogle Scholar
  3. 3.
    Ang, A., Bekaert, G.: International asset allocation with regime shifts. Rev. Financ. Stud. 15, 1137–1187 (2002)CrossRefGoogle Scholar
  4. 4.
    Ang, A., Bekaert, G.: Timing and diversification: a state-dependent asset allocation approach. Financ. Anal. J. 60, 1137–1187 (2004)CrossRefGoogle Scholar
  5. 5.
    Bauer, R., Haerden, R., Molenaar, R.: Timing and diversification: a state-dependent asset allocation approach. J. Invest. 13, 72–80 (2004)CrossRefGoogle Scholar
  6. 6.
    Bulla, J., Bulla, I.: Stylised facts of financial time series and hidden semi-Markov models. Comput. Stat. Data Anal. 51, 2192–2209 (2006)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Bulla, J., Mergner, S., Bulla, I., Sesboüé, A., Chesneau, C.: Markov switching asset allocation: do profitable strategies exist? Journal of Asset Management 12, 310–321 (2011)CrossRefGoogle Scholar
  8. 8.
    Ching, W., Ng, M.K., Fung, E.S.: Higher-order multivariate Markov chains and their applications. Linear Algebra Appl. 428, 492–507 (2008)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Ching, W.K., Siu, T.K., Li, L.M.: Pricing exotic options under a higher-order hidden Markov model. J. Appl. Math. Decis. Sci. 2007, 1–15 (2007). Article ID 18014CrossRefMathSciNetGoogle Scholar
  10. 10.
    Couillard, M., Davison, M.: A comment on measuring the Hurst exponent in financial time series. Physica. A, Statistical Mechanics and Its Applications 348, 404–418 (2005)CrossRefGoogle Scholar
  11. 11.
    Dajcman, S.: Time-varying long-range dependence in stock market returns and financial market disruptions—a case of eight European countries. Appl. Econ. Lett. 19, 953–957 (2012)CrossRefGoogle Scholar
  12. 12.
    Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. CRC Press, Boca Raton, FL (1994)Google Scholar
  13. 13.
    Elliott, R.J., Aggoun, L., Moore, J.B.: Hidden Markov Models: Estimation and Control. Springer, New York (1995)MATHGoogle Scholar
  14. 14.
    Elliott, R.J., Siu, T.K., Badescu, A.: On mean-variance portfolio selection under a hidden Markovian regime-switching model. Econ. Model. 27, 678–686 (2010)CrossRefGoogle Scholar
  15. 15.
    Elliott, R.J., vander Hoek, J.: An application of hidden markov models to asset allocation problems. Finance Stoch. 1, 229–238 (1997)CrossRefMATHGoogle Scholar
  16. 16.
    Erlwein, C., Mamon, R., Davison, M.: An examination of HMM-based investment strategies for asset allocation. Appl. Stoch. Models Bus. Ind. 27, 204–221 (2011)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Graflund, A., Nilsson, B.: Dynamic portfolio selection: the relevance of switching regimes and investment horizon. Eur. Financ. Manag. 9, 179–00 (2003)CrossRefGoogle Scholar
  18. 18.
    Guidolin, M., Timmermann, A.: Asset allocation under multivariate regime switching. J. Econ. Dyn. Control 31, 3503–3544 (2007)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Hess, M.K.: Timing and diversification: a state-dependent asset allocation approach. Eur. J. Financ. 12, 189–204 (2006)CrossRefGoogle Scholar
  20. 20.
    Hurst, H.E.: Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 116, 770–770 (1951)Google Scholar
  21. 21.
    Lobato, I.N., Savin, N.E.: Real and spurious long memory in stock market data. J. Bus. Econ. Stat. 16, 261–266 (1988)MathSciNetGoogle Scholar
  22. 22.
    MacDonald, I.L., Zucchini, W.: Hidden Markov Model and other Models for Discrete-Valued Time Series. Chapman & Hall, London (1997)Google Scholar
  23. 23.
    Maheu, J.: Can GARCH models capture long-range dependence? Stud. Nonlinear Dyn. Econom. 9, 1 (2005)Google Scholar
  24. 24.
    Markowitz, H.M.: Portfolio selection. J. Finance 7, 77–91 (1952)Google Scholar
  25. 25.
    McCarthy, J., DiSario, R., Saraoglu, H., Li, H.C.: Tests of long-range dependence in interest rates using wavelets. Q. Rev. Econ. Finance 44, 180–189 (2004)CrossRefGoogle Scholar
  26. 26.
    Merton, R.C.: Optimum consumption and portfolio rules in a continuous-time model. J. Econ. Theory 3, 373–413 (1971)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Du Preez, J.A., Barnard, E., Weber, D.M.: Efficient high-order hidden Markov modeling. In: Proceedings of the International Conference on Spoken Language Processing, pp. 2911–2914 (1998)Google Scholar
  28. 28.
    Ray, B., Tsay, R.: Long range dependence in daily stock volatilities. J. Bus. Econ. Stat. 18, 254–262 (2000)Google Scholar
  29. 29.
    Rydén, T., Teräsvirta, T., Ȧsbrink, S.: Stylised facts of daily return series and the hidden Markov model. J. Appl. Econ. 13, 217–244 (1998)CrossRefGoogle Scholar
  30. 30.
    Samuelson, P.: Lifetime portfolio selection by dynamic stochastic programming. Rev. Econ. Stat. 51, 239–46 (1969)CrossRefGoogle Scholar
  31. 31.
    Siu, T.K., Ching, W.K., Fung, E., Ng, M., Li, X.: A high-order Markov-switching model for risk measurement. Comput. Math. Appl. 58, 1–10 (2009)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Solberg, J.: Modelling Random Processes for Engineers and Managers. Wiley & Sons, Inc., New Jersey (2009)Google Scholar
  33. 33.
    Xi, X., Mamon, R.: Parameter estimation of an asset price model driven by a weak hidden Markov chain. Econ. Model. 28, 36–46 (2011)CrossRefGoogle Scholar
  34. 34.
    Yu, S., Liu, Z., Squillante, M.S., Xia, C.H., Zhang, L.: A hidden semi-Markov model for web workload self-similarity. In: 21st IEEE International Performance, Computing, and Communications Conference, pp. 65–72 (2002)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of Applied MathematicsUniversity of Western OntarioLondonCanada
  2. 2.Department of Statistical and Actuarial SciencesUniversity of Western OntarioLondonCanada
  3. 3.Richard Ivey School of BusinessUniversity of Western OntarioLondonCanada

Personalised recommendations