HIV/AIDS Model with Delay and the Effects of Stochasticity

  • Z. Mukandavire
  • P. Das
  • C. Chiyaka
  • N. H. Gazi
  • K. Das
  • T. Shiri


We present a deterministic HIV/AIDS model with delay. We then extend the model by adjoining terms capturing stochastic effects. The intensity of the fluctuations in the stochastic system is analytically evaluated using Fourier transform methods. We carry out simulations to assess differences in the dynamical behavior of the deterministic and stochastic models. Simulation results show that they are no significant differences in the behavior of the two models.


HIV/AIDS model Incubation Delay Stochasticity 

Mathematics Subject Classifications (2000)

92B34 92B60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, R.M., Gupta, S., May, R.M.: Potential of community-wide chemotherapy or immunotherapy to control the spread of HIV-1. Nature 350(6316), 356–359 (1991)CrossRefGoogle Scholar
  2. 2.
    Horsthemke, W., Lefever, R.: Noise Induced Transitions. Springer, Berlin (1984)MATHGoogle Scholar
  3. 3.
    Hsu Schmitz, S.F.: A mathematical model of HIV transmission in homosexuals with genetic heterogeneity. J. Theor. Med. 2, 285–296 (2000)MATHCrossRefGoogle Scholar
  4. 4.
    Hsu Schmitz, S.F.: Effects of treatment or/and vaccination on HIV transmission in homosexuals with genetic heterogeneity. Math. Biosci. 167(1), 1–18 (2000)MATHCrossRefGoogle Scholar
  5. 5.
    Gardiner, C.W.: Handbook of Stochastic Methods. Springer New York (1983)MATHGoogle Scholar
  6. 6.
    Kurtz, T.G.: Solutions of ordinary differential equation as limits of pure jumps Markov process. J. Appl. Probab. 7, 49–58 (1970)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Kurtz, T.G.: Limit theorems for sequences of jump Markov processes approximating differential equations. J. Appl. Probab. 8, 344–356 (1971)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    May, R.M., Anderson, R.M.: Transmission dynamics of HIV infection. Nature 326, 137–142 (1987)CrossRefGoogle Scholar
  9. 9.
    May, R.M.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton (1974)Google Scholar
  10. 10.
    Mukandavire, Z., Garira, W., Chiyaka, C.: Asymptotic properties of an HIV/AIDS model with a time delay. J. Math. Anal. Appl. 330(2), 916–933 (2007)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Nisbet, R.M., Gurney, W.S.C.: Modelling Fluctuating Populations. Wiley-Interscience (1982)Google Scholar
  12. 12.
    Renshaw, E.: Modelling Biological Population in Space and Time. Cambridge University Press, Cambridge (1995)Google Scholar
  13. 13.
    Samanta, G.P.: The effect of random fluctuating environment on interacting species with time delay. Int. J. Math. Educ. Sci. Technol. 27, 13–21 (1996)MATHCrossRefGoogle Scholar
  14. 14.
    Samanta, G.P.: Permanence and extinction of a nonautonomous HIV/AIDS epidemic model with distributed time delay. Nonlinear Anal.: Real World Appl. 12(2), 1163–1177 (2011). doi: 10.1016/j.nonrwa.2010.09.010 MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Samanta, G.P.: Analysis of a nonautonomous HIV/AIDS epidemic model with distributed time delay. Math. Model. Anal. 15(3), 327–347 (2010)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Samanta, G.P.: Analysis of a nonautonomous HIV/AIDS model. Math. Model. Nat. Phenomena 5(6), 70–95 (2010)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Turelli, M.: Stochastic community theory: a partially guided tour. In: Hallam, T.G., Levin, S. (eds.) Mathematical Ecology. Springer, Berlin (1986)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Z. Mukandavire
    • 1
  • P. Das
    • 2
  • C. Chiyaka
    • 1
  • N. H. Gazi
    • 3
  • K. Das
    • 4
  • T. Shiri
    • 5
  1. 1.Emerging Pathogens InstituteUniversity of FloridaGainesvilleUSA
  2. 2.The Kidderpore AcademyKolkataIndia
  3. 3.St. Xavier’s CollegeKolkataIndia
  4. 4.School of Advanced Sciences, Department of MathematicsVIT UniversityTamil NaduIndia
  5. 5.School of Computational and Applied MathematicsUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations