Advertisement

Isomorphism Testing via Polynomial-Time Graph Extensions

  • Daniel Cosmin Porumbel
Article

Abstract

This paper deals with algorithms for detecting graph isomorphism (GI) properties. The GI literature consists of numerous research directions, from highly theoretical studies (e.g. defining the GI complexity class) to very practical applications (pattern recognition, image processing). We first present the context of our work and provide a brief overview of various algorithms developed in such disparate contexts. Compared to well-known NP-complete problems, GI is only rarely tackled with general-purpose combinatorial optimization techniques; however, classical search algorithms are commonly applied to graph matching (GM). We show that, by specifically focusing on exploiting isomorphism properties, classical GM heuristics can become very useful for GI. We introduce a polynomial graph extension procedure that provides a graph coloring (labeling) capable of rapidly guiding a simple-but-effective heuristic toward the solution. The resulting algorithm (GI-Ext) is quite simple, very fast and practical: it solves GI within a time in the region of O(|V|3) for numerous graph classes, including difficult (dense and regular) graphs with up to 20.000 vertices and 200.000.000 edges. GI-Ext can compete with recent state-of-the-art GI algorithms based on well-established GI techniques (e.g. canonical labeling) refined over the last three decades. In addition, GI-Ext also solves certain GM problems, e.g. it detects important isomorphic structures induced in non-isomorphic graphs.

Keywords

Graph isomorphism Polynomial extension GI-Ext 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Auwatanamongkol, S.: Inexact graph matching using a genetic algorithm for image recognition. Pattern Recogn. Lett. 28(12), 1428–1437 (2007)CrossRefGoogle Scholar
  2. 2.
    Babai, L., Erdos, P., Selkow, M.: Random graph isomorphism. SIAM J. Comput. 9(3), 628–635 (1980)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Babai, L., Grigoryev, D.Y., Mount, D.M.: Isomorphism of graphs with bounded eigenvalue multiplicity. In: Fourteenth Annual ACM Symposium on Theory of Computing, pp. 310–7324 (1982)Google Scholar
  4. 4.
    Babai, L., Luks, E.M.: Canonical labeling of graphs. In: Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, pp. 171–183. ACM, New York, NY, USA (1983)CrossRefGoogle Scholar
  5. 5.
    Bengoetxea, E., Larrańaga, P., Bloch, I., Perchant, A., Boeres, C.: Inexact graph matching by means of estimation of distribution algorithms. Pattern Recogn. 35(12), 2867–2880 (2002)MATHCrossRefGoogle Scholar
  6. 6.
    Booth, K.S.: Isomorphism testing for graphs, semigroups, and finite automata are polynomially equivalent problems. SIAM J. Comput. 7(3), 273–279 (1978)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bunke, H.: On a relation between graph edit distance and maximum common subgraph. Pattern Recogn. Lett. 18(8), 689–694 (1997)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bunke, H.: Recent developments in graph matching. In: Proc. 15th International Conference on Pattern Recognition, vol. 2, pp. 117–124 (2000)Google Scholar
  9. 9.
    Cesar, R.M., Bengoetxea, E., Bloch, I., Larra naga, P.: Inexact graph matching for model-based recognition: evaluation and comparison of optimization algorithms. Pattern Recogn. 38(11), 2099–2113 (2005)CrossRefGoogle Scholar
  10. 10.
    Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. Int. J. Pattern Recogn. Artif. Intell. 18(3), 265–298 (2004)CrossRefGoogle Scholar
  11. 11.
    Conte, D., Foggia, P., Vento, M.: Challenging complexity of maximum common subgraph detection algorithms: a performance analysis of three algorithms on a wide database of graphs. J. Graph Algorithms Appl. 11(1), 99–143 (2007)MathSciNetMATHGoogle Scholar
  12. 12.
    Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism algorithm for matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(10), 1367–1372 (2004)CrossRefGoogle Scholar
  13. 13.
    Corneil, D.G., Gotlieb, C.C.: An efficient algorithm for graph isomorphism. J. Assoc. Comput. Mach. 17(1), 51–64 (1970)MathSciNetMATHGoogle Scholar
  14. 14.
    Darga, P.T., Liffiton, M.H., Sakallah, K.A., Markov, I.L.: Exploiting structure in symmetry detection for CNF. In: Proceedings of the 41st Annual Conference on Design Automation, pp. 530–534. ACM, New York, NY, USA (2004)CrossRefGoogle Scholar
  15. 15.
    Darga, P.T., Sakallah, K.A., Markov, I.L.: Faster symmetry discovery using sparsity of symmetries. In: Proceedings of the 45th Annual Conference on Design Automation, pp. 149–154. ACM, New York, NY, USA (2008)CrossRefGoogle Scholar
  16. 16.
    De Santo, M., Foggia, P., Sansone, C., Vento, M.: A large database of graphs and its use for benchmarking graph isomorphism algorithms. Pattern Recogn. Lett. 24(8), 1067–1079 (2003)MATHCrossRefGoogle Scholar
  17. 17.
    Filotti, I.S., Mayer, J.N.: A polynomial-time algorithm for determining the isomorphism of graphs of fixed genus. In: STOC ’80: Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing, pp. 236–243. ACM (1980)Google Scholar
  18. 18.
    Fortin, S.: The graph isomorphism problem. Technical Report TR96–20, University of Alberta, Edmonton, Canada (1996)Google Scholar
  19. 19.
    Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness, pp. 154–161,202. W.H. Freeman & Co., New York, NY, USA (1979)MATHGoogle Scholar
  20. 20.
    Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 18(4), 377–387 (1998)CrossRefGoogle Scholar
  21. 21.
    Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by simulated annealing: an experimental evaluation. Oper. Res. 39(3), 378–406 (1991)MATHCrossRefGoogle Scholar
  22. 22.
    Junttila, T., Kaski, P.: Engineering an efficient canonical labeling tool for large and sparse graphs. In: Applegate, D., et al. (eds.) Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments and the Fourth Workshop on Analytic Algorithms and Combinatorics, pp. 135–149. SIAM (2007)Google Scholar
  23. 23.
    Kincaid, R.K.: A molecular structure matching problem. Comput. Oper. Res. 24(1), 25–35 (1997)MATHCrossRefGoogle Scholar
  24. 24.
    Kirkpatric, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Levi, G.: A note on the derivation of maximal common subgraphs of two directed or undirected graphs. Calcolo 9(4), 341–352 (1973)MATHCrossRefGoogle Scholar
  26. 26.
    López-Presa, J.L., Fernández Anta, A.: Fast algorithm for graph isomorphism testing. In: SEA. LNCS, vol. 5526, pp. 221–232 (2009)Google Scholar
  27. 27.
    Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial time. J. Comput. Syst. Sci 25(1), 42–65 (1982)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Luo, B., Hancock, E.R.: Structural graph matching using the EM algorithm and singular value decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1120–1136 (2001)CrossRefGoogle Scholar
  29. 29.
    McKay, B.D.: Practical graph isomorphism. Congressus Numerantium 30, 45–87 (1981)MathSciNetGoogle Scholar
  30. 30.
    Messmer, B.T., Bunke, H.: A new algorithm for error-tolerant subgraph isomorphism detection. IEEE Trans. Pattern Anal. Mach. Intell. 20(5), 493–504 (1998)CrossRefGoogle Scholar
  31. 31.
    Raymond, J.W., Willett, P.: Maximum common subgraph isomorphism algorithms for the matching of chemical structures. J. Comput.-Aided Mol. Des. 16(7), 521–533 (2002)CrossRefGoogle Scholar
  32. 32.
    Sammoud, O., Solnon, C., Ghédira, K.: Ant algorithm for the graph matching problem. In: Raidl, G.R., et al. (eds.) Evocop. LNCS, vol. 3448, pp. 213–223. Springer (2005)Google Scholar
  33. 33.
    Sanfeliu, A., Fu, K.S.: Distance measure between attributed relational graphs for pattern recognition. IEEE Trans. Syst. Man Cybern. 13(3), 353–362 (1983)MATHGoogle Scholar
  34. 34.
    Schmidt, D.C., Druffel, L.E.: A fast backtracking algorithm to test directed graphs for isomorphism using distance matrices. J. Assoc. Comput. Mach. 23(3), 433–445 (1976)MathSciNetMATHGoogle Scholar
  35. 35.
    Singh, M., Chatterjee, A., Chaudhury, S.: Matching structural shape descriptions using genetic algorithms. Pattern Recogn. 30(9), 1451–1462 (1997)CrossRefGoogle Scholar
  36. 36.
    Ullmann, J.R.: An algorithm for subgraph isomorphism. J. Assoc. Comput. Mach. 23, 31–42 (1976)MathSciNetGoogle Scholar
  37. 37.
    Wang, Y.K., Fan, K.C., Horng, J.T.: Genetic-based search for error-correcting graph isomorphism. IEEE Trans. Syst. Man Cybern. Part B 27(4), 588–597 (1997)CrossRefGoogle Scholar
  38. 38.
    Williams, M.L., Wilson, R.C., Hancock, E.R.: Deterministic search for relational graph matching. Pattern Recogn. 32(7), 1255–1271 (1999)CrossRefGoogle Scholar
  39. 39.
    Wiskott, L., Fellous, J.M., Krüger, N., von der Malsburg, C.: Face recognition by elastic bunch graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 775–779 (1997)CrossRefGoogle Scholar
  40. 40.
    Zemlyachenko, V.N., Korneenko, N.M., Tyshkevich, R.I.: Graph isomorphism problem. J. Math. Sci. 29(4), 1426–1481 (1985)MATHCrossRefGoogle Scholar
  41. 41.
    Zhang, K., Statman, R., Shasha, D.: On the editing distance between unordered labeled trees. Inf. Process. Lett. 42(3), 133–139 (1992)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Univ. Lille–Nord de France, UArtois, LGI2ABéthuneFrance

Personalised recommendations