Hybrid Flow-Shop: a Memetic Algorithm Using Constraint-Based Scheduling for Efficient Search

  • Antoine Jouglet
  • Ceyda Oğuz
  • Marc Sevaux


The paper considers the hybrid flow-shop scheduling problem with multiprocessor tasks. Motivated by the computational complexity of the problem, we propose a memetic algorithm for this problem in the paper. We first describe the implementation details of a genetic algorithm, which is used in the memetic algorithm. We then propose a constraint programming based branch-and-bound algorithm to be employed as the local search engine of the memetic algorithm. Next, we present the new memetic algorithm. We lastly explain the computational experiments carried out to evaluate the performance of three algorithms (genetic algorithm, constraint programming based branch-and-bound algorithm, and memetic algorithm) in terms of both the quality of the solutions produced and the efficiency. These results demonstrate that the memetic algorithm produces better quality solutions and that it is very efficient.


Multiprocessor task scheduling Hybrid flow-shop Genetic algorithm Constraint programming Memetic algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baptiste, Ph., Le Pape, C., Nuijten, W.: Satisfiability tests and time bound adjustments for cumulative scheduling problems. Ann. Oper. Res. 92, 3305–3333 (1999)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Baptiste, Ph., Le Pape, C., Nuijten, W.: Constraint-Based Scheduling, Applying Constraint Programming to Scheduling Problems, vol. 39. International Series in Operations Research and Management Science. Kluwer, Deventer (2001)Google Scholar
  3. 3.
    Błażewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., Wȩglarz, J.: Scheduling Computer and Manufacturing Processes, 2nd edn. Springer, Berlin (2001)MATHGoogle Scholar
  4. 4.
    Carlier, C., Pinson, E.: A practical use of jackson’s preemptive schedule for solving the job-shop problem. Ann. Oper. Res. 26, 269–287 (1990)MATHMathSciNetGoogle Scholar
  5. 5.
    Carlier, J., Néron, E.: An exact method for solving the multiprocessor flowshop. RAIRO-RO 34, 1–25 (2000)MATHCrossRefGoogle Scholar
  6. 6.
    Chen, J., Lee, C.-Y.: General multiprocessor task scheduling. Nav. Res. Logist. 46, 57–74 (1999)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Erschler, J., Lopez, P., Thuriot, C.: Raisonnement temporel sous contraintes de ressource et problèmes d’ordonnancement. Rev. Intell. Artif. 5(3), 7–32 (1991)Google Scholar
  8. 8.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley, Redwood City (1989)MATHGoogle Scholar
  9. 9.
    Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in genetic algorithms. In: Rawlins, G.J.E. (ed.) Foundations of Genetic Algorithms, pp. 69–93. Morgan Kaufman, San Mateo (1991)Google Scholar
  10. 10.
    Gupta, J.N.D.: Two stage hybrid flowshop scheduling problem. J. Oper. Res. Soc. 39(4), 359–364 (1988)MATHCrossRefGoogle Scholar
  11. 11.
    Holland, J.H.: Adaption in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)MATHGoogle Scholar
  12. 12.
    Ilog: Ilog Scheduler Reference Manual. Ilog, Gentilly (2004)Google Scholar
  13. 13.
    Krawczyk, H., Kubale, M.: An approximation algorithm for diagnostic test scheduling in multicomputer systems. IEEE Trans. Comput. 34, 869–872 (1985)CrossRefGoogle Scholar
  14. 14.
    Le Pape, C.: Implementation of resource constraints in ILOG SCHEDULE: a library for the development of constraint-based scheduling systems. Intell. Syst. Eng. 3(2), 55–66 (1994)CrossRefGoogle Scholar
  15. 15.
    Lee, C.-Y., Cai, X.: Scheduling one and two-processor tasks on two parallel processors. IIE Trans. 31, 445–455 (1999)Google Scholar
  16. 16.
    Lhomme, O.: Consistency techniques for numeric CSPs. In: Thirteenth International Joint Conference on Artificial Intelligence, Chambéry, August 1993Google Scholar
  17. 17.
    Lopez, P., Erschler, J., Esquirol, P.: Ordonnancement de tâches sous contraintes: une approche énergétique. RAIRO Autom. Prod. Inform. Ind. 26(6), 453–481 (1992)MATHGoogle Scholar
  18. 18.
    Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Technical Report C3P 826, Caltech Concurrent Computation Program, (1989)Google Scholar
  19. 19.
    Moscato, P.: Memetic algorithms: a short introduction. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 219–234. McGraw-Hill, New York (1999)Google Scholar
  20. 20.
    Moscato, P., Cotta, C.: A gentle introduction to memetic algorithms. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics, pp. 105–144. Kluwer, Deventer (2003)Google Scholar
  21. 21.
    Néron, E., Baptiste, Ph., Gupta, J.N.D.: Solving hybrid flow shop problem using energetic reasoning and global operations. Omega 29, 501–511 (2001)CrossRefGoogle Scholar
  22. 22.
    Nuijten, W.: Time and resource constrained scheduling: a constraint satisfaction approach. Ph.D. thesis, Eindhoven University of Technology (1994)Google Scholar
  23. 23.
    Nuijten, W., Aarts, E.H.L.: A computational study of constraint satisfaction for multiple capacitated job-shop scheduling. Eur. J. Oper. Res. 90(2), 269–284 (1996)MATHCrossRefGoogle Scholar
  24. 24.
    Oğuz, C., Ercan, M.F.: A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks. J. Sched. 8(4), 323–351 (2005)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Oğuz, C., Ercan, M.F., Cheng, T.C.E., Fung, Y.-F.: Heuristic algorithms for multiprocessor task scheduling in a two-stage hybrid flow-shop. Eur. J. Oper. Res. 149, 390–403 (2003)MATHCrossRefGoogle Scholar
  26. 26.
    Oğuz, C., Zinder, Y., Do, V.H., Janiak, A., Lichtenstein, M.: Hybrid flow-shop scheduling problems with multiprocessor task systems. Eur. J. Oper. Res. 152, 115–131 (2004)MATHCrossRefGoogle Scholar
  27. 27.
    Portmann, M.-C., Vignier, A., Dardilhac, D., Dezalay, D.: Branch and bound crossed with GA to solve hybrid flow shops. Eur. J. Oper. Res. 107, 389–400 (1998)MATHCrossRefGoogle Scholar
  28. 28.
    Serifoğlu, F.S., Ulusoy, G.: Multiprocessor task scheduling in multistage hybrid flow-shops: a genetic algorithm approach. J. Oper. Res. Soc. 55(5), 504–512 (2004)MATHCrossRefGoogle Scholar
  29. 29.
    Vignier, A.: Contribution à la Résolution des Problèmes d’Ordonnancement de type Monogamme, Multimachines Flow-shop hybride. Ph.D. thesis, University of Tours (1997)Google Scholar
  30. 30.
    Vignier, A., Billaut, J.-C., Proust, C.: Hybrid flowshop scheduling problems: state of the art. Rairo-Rech. Oper.-Oper. Res. 33, 117–183 (1999)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.HEUDIASYC, UMR CNRS 6599, Centre de Recherche de RoyallieuUniversité de Technologie de CompiègneCompiègne cedexFrance
  2. 2.Department of Industrial EngineeringKoç UniversityİstanbulTurkey
  3. 3.UEB—Lab-STICC, UMR CNRS 3192, Centre de RechercheUniversité de Bretagne SudLorient cedexFrance

Personalised recommendations