A Particle Swarm Optimization Algorithm with Path Relinking for the Location Routing Problem

  • Yannis Marinakis
  • Magdalene Marinaki


This paper introduces a new hybrid algorithmic nature inspired approach based on particle swarm optimization, for solving successfully one of the most popular logistics management problems, the location routing problem (LRP). The proposed algorithm for the solution of the location routing problem, the hybrid particle swarm optimization (HybPSO-LRP), combines a particle swarm optimization (PSO) algorithm, the multiple phase neighborhood search – greedy randomized adaptive search procedure (MPNS-GRASP) algorithm, the expanding neighborhood search (ENS) strategy and a path relinking (PR) strategy. The algorithm is tested on a set of benchmark instances. The results of the algorithm are very satisfactory for these instances and for six of them a new best solution has been found.


Particle swarm optimization MPNS-GRASP Path relinking Expanding neighborhood search Location routing problem 

Mathematics Subject Classifications (2000)

90B06 90B80 90C59 90C27 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albareda-Sambola, M., Diaz, J.A., Fernandez, E.: A compact model and tight bounds for a combined location-routing problem. Comput. Oper. Res. 32(3), 407–428 (2005)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Averbakh, I., Berman, O.: Routing and location-routing p-delivery men problems on a path. Transp. Sci. 28(2), 162–166 (1994)MATHMathSciNetGoogle Scholar
  3. 3.
    Barreto, S., Ferreira, C., Paixao, J., Santos, B.S.: Using clustering analysis in a capacitated location-routing problem. Eur. J. Oper. Res. 179(3), 968–977 (2007)MATHCrossRefGoogle Scholar
  4. 4.
    Bookbinder, J.H., Reece, K.E.: Vehicle routing considerations in distribution system design. Eur. J. Oper. Res. 37, 204–213 (1988)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Caballero, R., Gonzalez, M., Guerrero, F.M., Molina, J., Paralera, C.: Solving a multiobjective location routing problem with a metaheuristic based on tabu search. Application to a real case in Andalusia. Eur. J. Oper. Res. 177(3), 1751–1763 (2007)MATHGoogle Scholar
  6. 6.
    Cappanera, P., Gallo, G., Maffioli, F.: Discrete facility location and routing of obnoxious activities. Discrete Appl. Math. 133(1–3), 3–28 (2003)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chan, Y., Baker, S.F.: The multiple depot, multiple traveling salesmen facility-location problem: vehicle range, service frequency, and heuristic implementations. Math. Comput. Model. 41(8–9), 1035-1053 (2005)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Chiang, W.C., Russell, R.A.: Integrating purchasing and routing in a propane gas supply chain. Eur J. Oper. Res. 154(3), 710–729 (2004)MATHCrossRefGoogle Scholar
  9. 9.
    Christofides, N., Eilon, S.: An algorithm for the vehicle dispatching problem. Oper. Res. Q. 20, 309–318 (1969)Google Scholar
  10. 10.
    Christofides, N., Eilon, S.: Expected distances for distribution problems. Oper. Res. Q. 20, 437–443 (1969)Google Scholar
  11. 11.
    Daskin, M.: Network and Discrete Location. Models, Algorithms and Applications. Wiley, New York (1995)MATHGoogle Scholar
  12. 12.
    Dondo, R., Cerda, J.: A cluster-based optimization approach for the multi-depot heterogeneous fleet vehicle routing problem with time windows. Eur. J. Oper. Res. 176(3), 1478–1507 (2007)MATHCrossRefGoogle Scholar
  13. 13.
    Franchis, R.L., White, J.H.: Facility Layout and Location. An Analytic Approach, Prentice-Hall, New Jersey (1974)Google Scholar
  14. 14.
    Franchis, R.L., McGinnis, L.F., White, J.A.: Locational analysis. Eur. J. Oper. Res. 12(3), 220–252 (1983)CrossRefGoogle Scholar
  15. 15.
    Garfinkel, R., Nemhauser, G.: Integer Programming. Wiley, New York (1972)MATHGoogle Scholar
  16. 16.
    Gaskell, T.J.: Bases for vehicle fleet scheduling. Oper. Res. Q. 18, 281–295 (1967)CrossRefGoogle Scholar
  17. 17.
    Ghosh, J.K., Sinha, S.B., Acharya, D.: A generalized reduced gradient based approach to round-trip location problem. In: Jaiswal, N.K. (ed.) Scientific Management of Transport Systems, pp. 209–213. Amsterdam, Holland (1981)Google Scholar
  18. 18.
    Glover, F., Laguna, M., Marti, R.: Scatter search and path relinking: advances and applications. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics, pp. 1–36. Kluwer, Boston (2003)CrossRefGoogle Scholar
  19. 19.
    Golden B.L., Assad, A.A.: Vehicle Routing: Methods and Studies. North Holland, Amsterdam (1988)MATHGoogle Scholar
  20. 20.
    Hansen, P., Mladenovic, N.: Variable neighborhood search: principles and applications. Eur. J. Oper. Res. 130, 449–467 (2001)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Hwang, H.S.: Design of supply-chain logistics system considering service level. Comput. Ind. Eng. 43(1–2), 283–297 (2002)CrossRefGoogle Scholar
  22. 22.
    Jacobsen, S.K., Madsen, O.B.G.: A comparative study of heuristics for two level routing location problem. Eur. J. Oper. Res. 5, 378–387 (1980)MATHCrossRefGoogle Scholar
  23. 23.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)Google Scholar
  24. 24.
    Kennedy, J., Eberhart, R.: A discrete binary version of the particle swarm algorithm. In: Proceedings of 1997 IEEE International Conference on Systems, Man, and Cybernetics, vol. 5, pp. 4104–4108 (1997)Google Scholar
  25. 25.
    Laoutaris, N., Zissimopoulos, V., Stavrakakis, I.: On the optimization of storage capacity allocation for content distribution. Comput. Networks 47(3), 409–428 (2005)CrossRefGoogle Scholar
  26. 26.
    Laporte, G.: Location routing problems. Golden, B.L., et al. (eds.) Vehicle Routing: Methods and Studies, pp. 163–198. North Holland, Amsterdam (1988)Google Scholar
  27. 27.
    Laporte, G., Dejax, P.J.: Dynamic location-routing problems. J. Oper. Res. Soc. 40(5), 471–482 (1989)MATHCrossRefGoogle Scholar
  28. 28.
    Laporte, G., Nobert, Y., Arpin, D.: An exact algorithm for solving a capacitated location-routing problem. Ann. Oper. Res. 6, 293–310 (1986)CrossRefGoogle Scholar
  29. 29.
    Laporte, G., Nobert, Y., Pelletier, P.: Hamiltonian location problems. Eur. J. Oper. Res. 12(1), 82–89 (1983)MATHCrossRefGoogle Scholar
  30. 30.
    Lin, S.: Computer solutions of the traveling salesman problem. Bell Syst. Tech. J. 44, 2245–2269 (1965)MATHGoogle Scholar
  31. 31.
    Lin, C.K.Y., Chow, C.K., Chen, A.: A location-routing-loading problem for bill delivery services. Comput. Ind. Eng. 43(1–2), 5–25 (2002)CrossRefGoogle Scholar
  32. 32.
    Lin, C.K.Y., Kwok, R.C.W.: Multi-objective metaheuristics for a location-routing problem with multiple use of vehicles on real data and simulated data. Eur. J. Oper. Res. 175(3), 1833–1849 (2006)MATHCrossRefGoogle Scholar
  33. 33.
    Liu, S.C., Lee, S.B.: A two-phase heuristic method for the multi-depot location routing problem taking inventory control decisions into consideration. Int. J. Adv. Manuf. Technol. 22(11–12), 941–950 (2003)CrossRefGoogle Scholar
  34. 34.
    Madsen, O.B.G.: Methods for solving combined two level location routing problems of realistic dimension. Eur. J. Oper. Res. 12(3), 295–301 (1983)CrossRefGoogle Scholar
  35. 35.
    Marinakis, Y.: Vehicle routing in distribution problems. Ph.D. thesis, Technical University of Crete, Department of Production Engineering and Management, Chania, Greece (2005)Google Scholar
  36. 36.
    Marinakis, Y., Migdalas, A., Pardalos, P.M.: Expanding neighborhood grasp for the traveling salesman problem. Comput. Optim. Appl. 32, 231–257 (2004)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Marinakis, Y., Migdalas, A., Pardalos, P.M.: A hybrid genetic–GRASP algorithm using langrangean relaxation for the traveling salesman problem. J. Comb. Optim. 10, 311–326 (2005)MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Marinakis, Y., Migdalas, A., Pardalos, P.M.: Multiple phase neighborhood search GRASP based on Lagrangean relaxation and random backtracking Lin–Kernighan for the traveling salesman problem. J. Comb. Optim. 38, 555–580 (2006)MathSciNetGoogle Scholar
  39. 39.
    Marinakis, Y., Marinaki, M., Migdalas, A.: A hybrid Genetic–GRASP–ENS algorithm for the vehicle routing problem. IEEE Trans. Evol. Comput. (2007) (submitted)Google Scholar
  40. 40.
    Melechovsky, J., Prins, C., Calvo, R.W.: A metaheuristic to solve a location-routing problem with non-linear costs. J. Heuristics 11(5–6), 375–391 (2005)MATHCrossRefGoogle Scholar
  41. 41.
    Min, H.: Consolidation terminal location-allocation and consolidated routing problems. J. Bus. Logist. 17(2), 235–263 (1996)Google Scholar
  42. 42.
    Min, H., Jayaraman, V., Srivastava, R.: Combined location-routing problems: a synthesis and future research directions. Eur. J. Oper. Res. 108, 1–15 (1998)MATHCrossRefGoogle Scholar
  43. 43.
    Nagy, G., Salhi, S.: Nested heuristic methods for the location-routing problem. J. Oper. Res. Soc. 47, 1166–1174 (1996)MATHCrossRefGoogle Scholar
  44. 44.
    Nagy, G., Salhi, S.: Location-routing: issues, models and methods. Eur. J. Oper. Res. 177, 649–672 (2007)MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Or, I.: Traveling salesman-type combinatorial problems and their relation to the logistics of regional blood banking. Ph.D. thesis, Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL (1976)Google Scholar
  46. 46.
    Perl, J., Daskin, M.S.: A unified warehouse location-routing methodology. J. Bus. Logist. 5(1), 92–111 (1984)Google Scholar
  47. 47.
    Perl, J., Daskin, M.S.: A warehouse location routing model. Transp. Res. B 19, 381–396 (1985)CrossRefGoogle Scholar
  48. 48.
    Prins, C., Prodhon, C., Calvo, R.W.: Solving the capacitated location-routing problem by a grasp complemented by a learning process and a path relinking. 4OR 4, 221–238 (2006)MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Prins, C., Prodhon, C., Calvo, R.W.: A memetic algorithm with population management (MA|PM) for the capacitated location-routing problem. In: Evolutionary Computation Combinatorial Optimization. LNCS, vol. 906, pp. 183–194 (2006)Google Scholar
  50. 50.
    Resende, M.G.C., Ribeiro, C.C.: Greedy randomized adaptive search procedures. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics. Kluwer, Boston, pp. 219–249 (1998)Google Scholar
  51. 51.
    Russell, R., Chiang, W.C., Zepeda, D.: Integrating multi-product production and distribution in newspaper logistics. Comput. Oper. Res. (2007) doi: 10.1016/j.cor.2006.09.002
  52. 52.
    Simchi-Levi, D., Berman, O.: A heuristic algorithm for the traveling salesman location problem on networks. Eur. J. Oper. Res. 36, 478–484 (1988)MATHGoogle Scholar
  53. 53.
    Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of 1998 IEEE World Congress on Computational Intelligence, pp. 69–73 (1998)Google Scholar
  54. 54.
    Srivastava, R., Benton, W.C.: The location-routing problem: consideration in physical distribution system design. Comput. Oper. Res. 6, 427–435 (1990)CrossRefGoogle Scholar
  55. 55.
    Stowers, C.L., Palekar, U.S.: Location models with routing considerations for a single obnoxious facility. Transp. Sci. 27(4), 350–362 (1993)MATHGoogle Scholar
  56. 56.
    Toth, P., Vigo, D.: The Vehicle Routing Problem, Monographs on Discrete Mathematics and Applications, Siam (2002)Google Scholar
  57. 57.
    Tuzun, D., Burke, L.I.: A two-phase tabu search approach to the location routing problem. Eur. J. Oper. Res. 116, 87–99 (1999)MATHCrossRefGoogle Scholar
  58. 58.
    Watson-Gandy, C.T.D., Dohrn, P.J.: Depot location with van salesman – a practical approach. Omega 1, 321–329 (1973)CrossRefGoogle Scholar
  59. 59.
    Wu, T.H., Low, C., Bai, J.W.: Heuristic solutions to multi-depot location-routing problems. Comput. Oper. Res. 29, 1393–1415 (2002)MATHCrossRefGoogle Scholar
  60. 60.
    Zografos, K.G., Samara, S.: Combined location-routing model for hazardous waste transportation and disposal. Transp. Res. Record 1245, 52–59 (1989)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Production Engineering and ManagementTechnical University of CreteChaniaGreece

Personalised recommendations