Journal of Mathematical Modelling and Algorithms

, Volume 6, Issue 3, pp 361–391

# Finding Edge-disjoint Paths in Networks: An Ant Colony Optimization Algorithm

Article

## Abstract

One of the basic operations in communication networks consists in establishing routes for connection requests between physically separated network nodes. In many situations, either due to technical constraints or to quality-of-service and survivability requirements, it is required that no two routes interfere with each other. These requirements apply in particular to routing and admission control in large-scale, high-speed and optical networks. The same requirements also arise in a multitude of other applications such as real-time communications, vlsi design, scheduling, bin packing, and load balancing. This problem can be modeled as a combinatorial optimization problem as follows. Given a graph G representing a network topology, and a collection T={(s 1,t 1)...(s k ,t k )} of pairs of vertices in G representing connection request, the maximum edge-disjoint paths problem is an NP-hard problem that consists in determining the maximum number of pairs in T that can be routed in G by mutually edge-disjoint s i t i paths. We propose an ant colony optimization (aco) algorithm to solve this problem. aco algorithms are approximate algorithms that are inspired by the foraging behavior of real ants. The decentralized nature of these algorithms makes them suitable for the application to problems arising in large-scale environments. First, we propose a basic version of our algorithm in order to outline its main features. In a subsequent step we propose several extensions of the basic algorithm and we conduct an extensive parameter tuning in order to show the usefulness of those extensions. In comparison to a multi-start greedy approach, our algorithm generates in general solutions of higher quality in a shorter amount of time. In particular the run-time behaviour of our algorithm is one of its important advantages.

## Keywords

Ant colony optimization Maximum edge-disjoint paths problem

## Abbreviations

EDP

(maximum) edge-disjoint paths problem

SGA

Simple Greedy Algorithm

MSGA

Multi-start Greedy Algorithm

ACS

Ant Colony System

ACO

Ant Colony Optimization

## Mathematics Subject Classifications (2000)

90-08 68Wxx 68T20

## References

1. 1.
Aggarwal, A., Bar-Noy, A., Coppersmith, D., Ramaswami, R., Schieber, B., Sudan, M.: Efficient routing and scheduling algorithms for optical networks. In: 5th. ACM-SIAM Symposium on Discrete Algorithms (SODA’94), pp. 412–423. SIAM (1994)Google Scholar
2. 2.
Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. Journal of the ACM 45(3), 501–555 (1998)
3. 3.
Aumann, Y., Rabani, Y.: Improved bounds for all-optical routing. In: 6th. ACM-SIAM Symposium on Discrete Algorithms (SODA’95), pp. 567–576. SIAM, Philadelphia, PA (1995)Google Scholar
4. 4.
Awerbuch, B., Gawlick, R., Leighton, F., Rabani, Y.: On-line admission control and circuit routing for high performance computing and communication. In: 35th IEEE Symposium on Foundations of Computer Science (FOCS’94), pp. 412–423. IEEE Computer Society Press, Los Alamitos, CA (1994)Google Scholar
5. 5.
Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)
6. 6.
Baveja, A., Srinivasan, A.: Approximation algorithms for disjoint paths and related routing and packing problems. Math. Oper. Res. 25(2), 255–280 (2000)
7. 7.
Blesa, M., Blum, C.: Ant colony optimization for the maximum edge-disjoint paths problem. In: 1st European Workshop on Evolutionary Computation in Communications, Networks, and Connected Systems (EvoCOMNET’04). Lecture Notes in Computer Science, vol. 3005, pp. 160–169. Springer, Berlin Heidelberg New York (2004)Google Scholar
8. 8.
Blesa, M., Blum, C.: Finding edge-disjoint paths with artificial ant colonies. Technical Report LSI-05-13-R, Dept. Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya (2005)Google Scholar
9. 9.
Blum, C., Dorigo, M.: The hyper-cube framework for ant colony optimization. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 34(2), 1161–1172 (2004)
10. 10.
Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)
11. 11.
Brandes, U., Wagner, D.: A linear time algorithm for the arc disjoint menger problem in planar directed graphs. Algorithmica 28(1), 16–36 (2000)
12. 12.
Chekuri, C., Khanna, S.: Edge disjoint paths revisited. In: 14th annual ACM-SIAM Symposium on Discrete algorithms (SODA’03), pp. 628–637. SIAM, Philadelphia, PA (2003)Google Scholar
13. 13.
Costa, M.-C., Létocart, L., Roupin, F.: Multicut and integral multiflow: a survey. Eur. J. Oper. Res. 162(1), 55–69 (2005)
14. 14.
Di Caro, G., Dorigo, M.: AntNet: distributed stigmergetic control for communications networks. J. Artif. Intell. Res. 9, 317–365 (1998)
15. 15.
Di Caro, G., Ducatelle, F., Gambardella, L.M.: AntHocNet: an adaptive nature-inspired algorithm for routing in mobile ad hoc networks. Eur. Trans. Telecommun. 16(5), 443–455 (2005)
16. 16.
Dorigo, M.: Ottimizzazione, Apprendimento Automatico, ed Algoritmi basati su Metafora Naturale. PhD thesis, DEI, Politecnico di Milano, Milan, Italy (1992)Google Scholar
17. 17.
Dorigo, M., Gambardella, L.: Ant Colony System: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)
18. 18.
Dorigo, M., Maniezzo, V., Colorni, A.: Ant System: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cyber., Part B, Cybern. 26(1), 29–41 (1996)
19. 19.
Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge, MA (2004)
20. 20.
Erlebach, T.: Approximation algorithms and complexity results for path problems in trees of rings. In: 26th International Symposium on Mathematical Foundations of Computer Science (mfcs’01). Lecture Notes in Computer Science, vol. 2136, pp. 351–362. Springer, Berlin Heidelberg New York (2001)Google Scholar
21. 21.
Gambardella, L., Dorigo, M.: Solving symmetric and asymmetric TSPs by ant colonies. In: IEEE International Conference on Evolutionary Computation (icec’96), pp. 622–627. IEEE Computer Society Press, Los Alamitos, CA (1996)
22. 22.
Garg, N., Vazirani, V., Yannakakis, M.: Primal-dual approximation algorithms for integral flow and multicut in trees. Algorithmica 18(1), 3–20 (1997)
23. 23.
Guruswami, V., Khanna, S., Rajaraman, R., Shepherd, B., Yannakakis, M.: Near-optimal hardness results and approximation algorithms for edge-disjoint paths and related problems. J. Comput. Syst. Sci. 67b(3), 473–496 (2003)
24. 24.
Hromkovič, J., Klasing, R., Stöhr, E., Wagener, H.: Gossiping in vertex-disjoing paths mode in d-dimensional grids and planar graphs. In: 1st Annual European Symposium on Algorithms (ESA’93). Lecture Notes in Computer Science, vol. 726, pp. 200–211. Springer, Berlin Heidelberg New York (1993)Google Scholar
25. 25.
Karp, R.: Compexity of computer computations, Chapter Reducibility Among Combinatorial Problems, pp. 85–103. Plenum, New York (1972)Google Scholar
26. 26.
Kleinberg, J.: Approximation algorithms for disjoint paths problems. PhD thesis, MIT Press, Cambridge, USA (1996)Google Scholar
27. 27.
Kolliopoulos, S., Stein, C.: Approximating disjoint-path problems using packing integer programs. Math. Program. 99(1), 63–87 (2004)
28. 28.
Kolman, P., Scheideler, C.: Simple on-line algorithms for the maximum disjoint paths problem. In: 13th ACM Symposium on Parallel Algorithms and Architectures (SPAA’01), pp. 38–47. ACM Press, New York (2001)Google Scholar
29. 29.
Kolman, P., Scheideler, C.: Improved bounds for the unsplittable flow problem. In: 13th annual ACM-SIAM symposium on Discrete algorithms (SODA’02), pp. 184–193. SIAM, Philadelphia, PA (2002)Google Scholar
30. 30.
Kramer, M., van Leeuwen, J.: Advances in computing research. In: VLSI theory. The complexity of wire-routing and finding minimum area layouts for arbitrary VLSI circuits, vol. 2, pp. 129–146. JAI Press, Greenwhich, CT (1984)Google Scholar
31. 31.
Ma, B., Wang, L.: On the inapproximability of disjoint paths and minimum steiner forest with bandwidth constraints. J. Comput. Syst. Sci. 60(1), 1–12 (2000)
32. 32.
Marx, D.: Eulerian disjoint paths problem in grid graphs is NP-complete. Discrete Appl. Math. 143(1–3), 336–341 (2004)
33. 33.
Medina, A., Lakhina, A., Matta, I., Byers, J.: BRITE: Boston University Representative Internet Topoloy Generator. http://cs-pub.bu.edu/brite/index.htm (2001)
34. 34.
Middendorf, M., Pfeiffer, F.: On the complexity of the disjoint path problem. Combinatorica 13(1), 97–107 (1993)
35. 35.
Nishizeki, T., Vygen, J., Zhou, X.: The edge-disjoint paths problem is np-complete for series-parallel graphs. Discrete Appl. Math. 115(1–3), 177–186 (2001)
36. 36.
Nowé, A., Verbeeck, K., Vrancx, P.: Multi-type ant colony: the edge disjoint paths problem. In: 4th International Workshop on Ant Colony Optimization and Swarm Intelligence (ANTS’04). Lecture Notes in Computer Science, vol. 3172, pp. 202–213. Springer, Berlin Heidelberg New York (2004)Google Scholar
37. 37.
Raghavan, P., Upfal, E.: Efficient all-optical routing. In: 26th. Annual ACM Symposium on Theory of Computing (stoc’94), pp. 134–143. ACM Press, New York (1994)Google Scholar
38. 38.
Ripphausen-Lipa, H., Wagner, D., Weihe, K.: The vertex-disjoint Menger problem in planar graphs. SIAM J. Comput. 26(2), 331–349 (1997)
39. 39.
Sidhu, D., Nair, R., Abdallah, S.: Finding disjoint paths in networks. ACM SIGCOMM Computer Communication Review 21(4), 43–51 (1991)
40. 40.
Srinivasan, A.: Improved approximations for edge-disjoint paths, unsplittable flow and related routing problems. In: 38th Annual IEEE Symposium on Foundations of Computer Science (focs’97), pp. 416–425. IEEE Computer Society Press, Los Alamitos, CA (1997)
41. 41.
Stützle, T., Hoos, H.: $$\mathcal {MAX-MIN}$$ ant system. Future Gener. Comput. Syst. 16(8), 889–914 (2000)
42. 42.
Varadarajan, K., Venkataraman, G.: Graph decomposition and a greedy algorithm for edge-disjoint paths. In: 15th annual ACM-SIAM Symposium on Discrete Algorithms (SODA’04), pp. 379–380. SIAM, Philadelphia, PA (2004)Google Scholar
43. 43.
Vygen, J.: NP-completeness of some edge-disjoint paths problems. Discrete Appl. Math. 61(1), 83–90 (1995)
44. 44.
Waxman, B.: Routing of multipoint connections. IEEE J. Sel. Areas Commun. 6(9), 1671–1622 (1988)
45. 45.
Weihe, K.: Edge-disjoint (st)-paths in undirected planar graphs in linear time. J. Algorithms 23(1), 121–138 (1997)