An Interval-Parameter Fuzzy Approach for Multiobjective Linear Programming Under Uncertainty



An interval-parameter fuzzy linear programming method (IFMOLP) is proposed in this study for multiple objective decision-making under uncertainty. As a hybrid of interval-parameter and fuzzy methodologies, the IFMOLP incorporates interval-parameter linear programming and fuzzy multiobjective programming approaches to form an integrated optimization system. The method inherits advantages of interval-parameter programming, and allows uncertainties and decision-makers’ aspirations to be effectively communicated into its programming processes and resulting solutions. Membership functions for both objectives and constraints are formulated to reflect uncertainties in different system components and their interrelationships. An interactive solution procedure has been developed based on solution approaches of the interval-parameter and fuzzy programming techniques, plus necessary measures for handling the multiobjective feature. A didactic example is provided in the paper to illustrate the detailed solution process. Possibilities of further improvements by seeking Pareto optimum and incorporating flexible preference within constraints are also discussed.

Key words

fuzzy set interval parameter linear programming multiobjective uncertainty 

Mathematics Subject Classifications (2000)

90C05 90C29 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benayoun, R., de Montgolfier, J., Tergny, J., Larichev, O.: Linear programming with multiple objective functions: STEP method (STEM). Math. Program. 1, 366–375 (1971)MATHCrossRefGoogle Scholar
  2. 2.
    Chang, N.B., Yeh, S.C., Wu, G.C.: Stability analysis of grey compromise programming and its application to watershed land-use planning. Int. J. Syst. Sci. 30(6), 571–582 (1999)MATHCrossRefGoogle Scholar
  3. 3.
    Goicoechea, A., Hansen, D.R., Duckstein L.: Multiobjective Decision Analysis with Engineering and Business Applications. Wiley, New York (1982)Google Scholar
  4. 4.
    Huang, G.H.: IPWM: An interval parameter water management model. Eng. Optim. 26, 79–103 (1996)Google Scholar
  5. 5.
    Huang, G.H., Baetz, B.W., Patry, G.G.: A grey linear programming approach for municipal solid waste management planning under uncertainty. Civ. Eng. Syst. 9, 319–335 (1992)Google Scholar
  6. 6.
    Huang, G.H., Baetz, B.W., Patry, G.G.: Waste flow allocation under independent stipulation uncertainties. Civ. Eng. Syst. 11, 209–243 (1994)Google Scholar
  7. 7.
    Lai, Y.J., Hwang, C.L.: Fuzzy Multiple Objective Decision Making – Methods and Applications. Springer, Berlin Heidelberg New York (1994)MATHGoogle Scholar
  8. 8.
    Luhandjula, M.K.: Compensatory operators in fuzzy linear programming with multiple objectives. Fuzzy Sets Syst. 8, 245–252 (1982)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Luhandjula, M.K.: Multiobjective programming problems with possibilistic coefficients. Fuzzy Sets Syst. 21, 135–145 (1987)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Rommelfanger, H.: Fuzzy linear programming and applications. Eur. J. Oper. Res. 92, 512–527 (1996)MATHCrossRefGoogle Scholar
  11. 11.
    Sakawa, M., Kato, K., Nishizaki, I.: An interactive fuzzy satisficing method for multiobjective stochastic linear programming problems through an expectation model. Eur. J. Oper. Res. 145(3), 665–672 (2003)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Sakawa, M., Yano, H.: An interactive fuzzy satisfying method for generalized multiobjective linear programming problems with fuzzy parameters. Fuzzy Sets Syst. 35, 125–142 (1990)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Slowinski, R., Teghem, J. (eds.): Stochastic versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty. Kluwer, Dordrecht (1990)MATHGoogle Scholar
  14. 14.
    Stanciulescu, C., Fortemps, P., Installe, M., Wertz, V.: Multiobjective fuzzy linear programming problems with fuzzy decision variables. Eur. J. Oper. Res. 149(3), 654–675 (2003)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Teghem, J., Dufrasne, D., Thauvoye, M., Kunsch P.: STRANGE: An interactive method for multiobjective linear programming under uncertainty. Eur. J. Oper. Res. 26(1), 65–82 (1986)MATHCrossRefGoogle Scholar
  16. 16.
    Urli, B., Nadeau, R.: Multiobjective stochastic linear programming with incomplete information: A general methodology. In: Slowinski, R., Teghem, J. (eds.) Stochastic vs. Fuzzy Approaches to Multiobjective Mathematical Programming Under Uncertainty, pp. 131–161. Kluwer, Dordrecht (1990)Google Scholar
  17. 17.
    Yeomans, J.S., Huang, G.H.: An evolutionary grey, hop, skip, and jump approach: Generating alternative policies for the expansion of waste management facilities. J. Environ. Inform. 1, 37–51 (2003)Google Scholar
  18. 18.
    Zimmermann, H.J.: Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1, 45–55 (1978)MATHCrossRefGoogle Scholar
  19. 19.
    Zimmermann, H.J.: Fuzzy Sets and Decision Analysis. Elsevier, Amsterdam, Holland (1984)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Faculty of EngineeringUniversity of ReginaReginaCanada

Personalised recommendations