Advertisement

Journal of Mathematical Modelling and Algorithms

, Volume 4, Issue 3, pp 307–316 | Cite as

Effective measurement of network vulnerability under random and intentional attacks

  • Regino Criado
  • Julio Flores
  • Benito Hernández-Bermejo
  • Javier Pello
  • Miguel Romance
Article

Abstract

The study of the security and stability of complex networks plays a central role in reducing the risk and consequences of attacks or disfunctions of any type. The concept of vulnerability helps to measure the response of complex networks subjected to attacks on vertices and edges and it allows to spot the critical component of a network in order to improve its security. We introduce an accurate and computable definition of network vulnerability which is directly connected with its topology and we analyze its basic properties. We discuss the relationship of the vulnerability with other parameters of the network and we illustrate this with some examples.

Mathematics Subject Classifications (2000)

90B18 68M10 91D30 90C35 

Key words

network vulnerability graph connectivity network robustness stability of complex networks communication networks biological networks international attack random breakdown network topology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert, R. and Barabási, A. L.: Statistical mechanics of complex networks, Rev. Mod. Phys. 74 (2002), 47–97.CrossRefGoogle Scholar
  2. 2.
    Barabási, A. L. and Albert, R.: Emergence of scaling in random networks, Science 286 (1999), 509–512.CrossRefPubMedMathSciNetGoogle Scholar
  3. 3.
    Bar-Yam, Y.: Dynamics of Complex System, Addison-Wesley, 1997.Google Scholar
  4. 4.
    Cohen, R., Erez, K., Ben-Avbraham, D. and Havril S.: Resilience of the Internet to random breakdowns, Phys. Rev. Lett. 85(21) (2000), 4626–4628.CrossRefPubMedGoogle Scholar
  5. 5.
    Cohen, R., Erez, D., Ben-Avbraham, D. and Havril S.: Breakdown of the Internet under international attacks, Phys. Rev. Lett. 86(16) (2001) 3682–3685.CrossRefPubMedGoogle Scholar
  6. 6.
    Crucitti, P., Latora, M., Marchiori, M. and Rapisarda, A.: Efficiency of scale-free networks: Error and attack tolerance, Physica, A 320 (2003), 622–642.MATHCrossRefGoogle Scholar
  7. 7.
    Dekker, A. H. and Colbert, B. D.: Network robustness and graph topology, in: Proc. Twenty-Seventh Australasian Computer Science Conference (ACSC2004), Vladimir Estivill-Castro, Ed., ISBN 1-920682-05-8, Dunedin, New Zealand. CRPIT, 26. Estivill-Castro, V., Ed. ACS, (2004), pp. 359–368.Google Scholar
  8. 8.
    Holme, P., Kim, B. J., Yoon, C. N. and Han, S. H.: Attack vulnerability of complex networks, Phys. Rev., E 65 (2002), art. no. 056109.Google Scholar
  9. 9.
    Jeong, H., Mason, S., Barabási A. L. and Oltvai, Z. N.: Lethality and centrality in protein networks, Nature 411 (2001), 41–42.CrossRefPubMedGoogle Scholar
  10. 10.
    Jeong, H., Tombor, T., Albert, R., Oltvai, Z. N. and Barabási, A. L.: The large-scale organization of metabolic networks, Nature 407 (2000), 651–654.CrossRefPubMedGoogle Scholar
  11. 11.
    Latora, V. and Marchiori, M.: Efficient behavior of small-world networks, Phys. Rev. Lett. 87(19) (2001), 1-198701-4.Google Scholar
  12. 12.
    Latora, V. and Marchiori, M.: Economic small-world behavior in weighted networks, Eur. Phys. J., B. 32 (2003), 249–263.CrossRefGoogle Scholar
  13. 13.
    Latora, V. and Marchiori, M.: How the science of complex networks can help developing strategies against terrorism, Chaos, Solitons Fractals 20 (2004) 69–75.MATHCrossRefGoogle Scholar
  14. 14.
    Newman, M. E. J.: The structure and function of complex networks, SIAM Rev. 45 (2003), 167–256.CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Strogatz, S. H.: Exploring complex networks, Nature 410 (2001), 268–276.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Regino Criado
    • 1
  • Julio Flores
    • 1
  • Benito Hernández-Bermejo
    • 1
  • Javier Pello
    • 1
  • Miguel Romance
    • 1
  1. 1.Departamento de Matemáticas y Física Aplicadas y CC. de la Naturaleza, ESCETUniversidad Rey Juan CarlosMóstolesSpain

Personalised recommendations