Analysing ‘Simple’ Image Registrations

Abstract

Processes such as growth and atrophy cause changes through time that can be visible in a series of medical images, following the hypothesis that form follows function. As was hypothesised by D’Arcy Thompson more than 100 years ago, models of the changes inherent in these actions can aid understanding of the processes at work. We consider how image registration using finite-dimensional planar Lie groups (in contrast to general diffeomorphisms) can be used in this process. The deformations identified can be described as points in the Lie algebra, thus enabling processes such as evolutionary change, growth, and deformation from disease, to be described in a linear space. The choice of appropriate Lie group becomes a modelling choice and can be selected using model selection; Occam’s razor suggests that groups with the smallest number of parameters (which Thompson referred to as ‘simple transformations’) are to be preferred. We demonstrate our method on an example from Thompson of the cannon-bones of three hoofed mammals and a set of outline curves of the development of the human skull, with promising results.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Aho, K., Derryberry, D., Peterson, T.: Model selection for ecologists: the worldviews of AIC and BIC. Ecology 95(3), 631–636 (2014)

    Article  Google Scholar 

  2. 2.

    Arthur, W.: D’Arcy Thompson and the theory of transformations. Nat. Rev. Genet. 7(5), 401–406 (2006). https://doi.org/10.1038/nrg1835

    Article  Google Scholar 

  3. 3.

    Bookstein, F.L.: Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  4. 4.

    Broadbent, B.H., Golden, W.H.: Bolton Standards of Dentofacial Developmental Growth. Mosby, St. Louis (1975)

    Google Scholar 

  5. 5.

    Durrleman, S., Pennec, X., Trouvé, A., Gerig, G., Ayache, N.: Spatiotemporal atlas estimation for developmental delay detection in longitudinal datasets. In: Medical Image Computing and Computer-Assisted Intervention-MICCAI, pp. 297–304 (2009)

  6. 6.

    González-López, A., Kamran, N., Olver, P.J.: Lie algebras of vector fields in the real plane. Proc. Lond. Math. Soc. 64(3), 339–368 (1992)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Kendall, D.G.: Shape manifolds, Procrustean metrics, and complex projective spaces. Bull. Lond. Math. Soc. 16(2), 81–121 (1984)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Lele, S.R., Richtsmeier, J.T.: An Invariant Approach to Statistical Analysis of Shapes. CRC Press, Boca Raton (2001)

    Google Scholar 

  9. 9.

    Lorenzi, M., Ayache, N., Pennec, X.: Schild’s ladder for the parallel transport of deformations in time series of images. In: Information Processing in Medical Imaging (IPMI), pp. 463–474 (2011)

  10. 10.

    Lorenzi, M., Frisoni, G., Ayache, N., Pennec, X.: Mapping the effects of a\(\beta \) 1- 42 levels on the longitudinal changes in healthy aging: hierarchical modeling based on stationary velocity fields. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 663–670 (2011)

  11. 11.

    Lorenzi, M., Pennec, X.: Geodesics, parallel transport & one-parameter subgroups for diffeomorphic image registration. Int. J. Comput. Vis. 105(2), 111–127 (2013)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Mani, V.R.S., Rivazhagan, S.: Survey of medical image registration. J. Biomed. Eng. Technol. 1(2), 8–25 (2013)

    Google Scholar 

  13. 13.

    Marsland, S., Shardlow, T.: Langevin equations for landmark image registration with uncertainty. SIAM J. Imag. Sci. 10(2), 782–807 (2017)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Marsland, S., Twining, C., Taylor, C.: A minimum description length objective function for groupwise non-rigid image registration. Image Vis. Comput. 26(3), 333–346 (2008)

    Article  Google Scholar 

  15. 15.

    Miller, M.I., Trouvé, A., Younes, L.: Hamiltonian systems and optimal control in computational anatomy: 100 years since D’Arcy Thompson. Annu. Rev. Biomed. Eng. 17(1), 447–509 (2015). https://doi.org/10.1146/annurev-bioeng-071114-040601

    Article  Google Scholar 

  16. 16.

    Milnor, J.: Geometry of growth and form: commentary on D’Arcy Thompson (2010). A talk at the Institute for Advanced Study in Princeton. Available at https://www.ias.edu/ideas/2010/milnor-geometry-of-growth

  17. 17.

    Modersitzki, J.: Fair: Flexible Algorithms for Image Registration. SIAM, New Delhi (2009)

    Google Scholar 

  18. 18.

    Petukhov, S.V.: Non-Euclidean geometries and algorithms of living bodies. Comput. Math. Appl. 17(4), 505–534 (1989)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Rao, A., Chandrashekara, R., Sanchez-Hortiz, G., Mohiaddin, R., Aljabar, P., Hajnal, J., Puri, B., Rueckert, D.: Spatial transformation of motion and deformation fields using nonrigid registration. IEEE Trans. Med. Imag. 23, 1065–1076 (2004)

    Article  Google Scholar 

  20. 20.

    Sommer, S., Arnaudon, A., Kuhnel, L., Joshi, S.: Bridge simulation and metric estimation on landmark manifolds. In: Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics, Lecture Notes in Computer Science, pp. 79–91. Springer (2017)

  21. 21.

    Sotiras, A., Davatzikos, C., Paragios, N.: Deformable medical image registration: a survey. IEEE Trans. Med. Imag. 32(7), 1153–1190 (2013)

    Article  Google Scholar 

  22. 22.

    Tang, Z., Wu, Y., Yong, F.: Groupwise registration of MR brain images with tumors. Phys. Med. Biol. 62(17), (2017)

  23. 23.

    Thompson, D.W.: Morphology and mathematics. Trans. R. Soc. Edinb. L 857–895, (1915)

  24. 24.

    Thompson, D.W.: On Growth and Form, 2nd edn. Cambridge University Press, Cambridge (1942)

    Google Scholar 

  25. 25.

    Trouve, A., Vialard, F.X.: Shape splines and stochastic shape evolutions: a second order point of view. Q. Appl. Math. 70(2), 219–251 (2012)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Wu, G., Wang, Q., Jia, H., Shen, D.: Feature-based groupwise registration by hierarchical anatomical correspondence detection. Hum. Brain Mapp. 33, 253–271 (2012)

    Article  Google Scholar 

  27. 27.

    Younes, L.: Jacobi fields in groups of diffeomorphisms and applications. Q. Appl. Math. 65(1), 113–134 (2007)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Younes, L., Qiu, A., Winslow, R., Miller, M.: Transport of relational structures in groups of diffeomorphisms. J. Math. Imag. Vis. 32, 41–56 (2008)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Royal Society of New Zealand Marsden Fund (Grant No. MAU0908).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stephen Marsland.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marsland, S., McLachlan, R.I. & Zarre, R. Analysing ‘Simple’ Image Registrations. J Math Imaging Vis (2021). https://doi.org/10.1007/s10851-021-01018-2

Download citation

Keywords

  • Growth and form
  • Image registration
  • Lie groups