Optimum Cuts in Graphs by General Fuzzy Connectedness with Local Band Constraints


The goal of this work is to describe an efficient algorithm for finding a binary segmentation of an image such that the indicated object satisfies a novel high-level prior, called local band, LB, constraint; the returned segmentation is optimal, with respect to an appropriate graph-cut measure, among all segmentations satisfying the given LB constraint. The new algorithm has two stages: expanding the number of edges of a standard edge-weighted graph of an image; applying to this new weighted graph an algorithm known as an oriented image foresting transform, OIFT. In our theoretical investigation, we prove that OIFT algorithm belongs to a class of general fuzzy connectedness algorithms and so has several good theoretical properties, like robustness for seed placement. The extension of the graph constructed in the first stage ensures, as we prove, that the resulted object indeed satisfies the given LB constraint. We also notice that this graph construction is flexible enough to allow combining it with other high-level constraints. Finally, we experimentally demonstrate that the LB constraint gives competitive results as compared to geodesic star convexity, boundary band, and hedgehog shape prior, all implemented within OIFT framework and applied to various scenarios involving natural and medical images.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    In fact, we can use \(h(\omega (s,t))\) in place of \(e^{-\omega (s,t)}\) when h is any strictly decreasing function from \({\mathbb {R}}\) into \([0,\infty )\).

  2. 2.

    Shortly, \(F_L:={\bar{\omega }}\cdot \chi _{X_L}\), where \(\chi _{X_L}:{{\mathcal {A}}}\rightarrow \{0,1\}\) is the characteristic function of \(X_L\).


  1. 1.

    Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed graph. SIAM J. Comput. 1(2), 131–137 (1972)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Bejar, H.H.C., Miranda, P.A.V.: Oriented relative fuzzy connectedness: theory, algorithms, and its applications in hybrid image segmentation methods. EURASIP J. Image Video Process. 2015(21) Jul (2015)

  3. 3.

    Boykov, Y., Funka-Lea, G.: Graph cuts and efficient N–D image segmentation. Int. J. Comput. Vis. 70(2), 109–131 (2006)

    Article  Google Scholar 

  4. 4.

    de Moraes Braz, C.: Segmentação de imagens pela transformada imagem-floresta com faixa de restrição geodésica. Master’s thesis, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brasil (2016)

  5. 5.

    Ciesielski, K.C., Udupa, J.K., Falcão, A.X., Miranda, P.A.V.: Fuzzy connectedness image segmentation in graph cut formulation: a linear-time algorithm and a comparative analysis. J. Math. Imaging Vis. 44(3), 375–398 (2012)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Ciesielski, K.C., Udupa, J.K., Falcão, A.X., Miranda, P.A.V.: A unifying graph-cut image segmentation framework: algorithms it encompasses and equivalences among them. In: Proceedings of SPIE on Medical Imaging: Image Processing, vol. 8314 (2012)

  7. 7.

    Ciesielski, K.C., Udupa, J.K., Saha, P.K., Zhuge, Y.: Iterative relative fuzzy connectedness for multiple objects with multiple seeds. Comput. Vis. Image Underst. 107(3), 160–182 (2007)

    Article  Google Scholar 

  8. 8.

    Ciesielski, K.C., Falcão, A.X., Miranda, P.A.V.: Path-value functions for which Dijkstra’s algorithm returns optimal mapping. J. Math. Imaging Vis. 60(7), 1025–1036 (2018)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Ciesielski, K.C., Herman, G.T., Yung Kong, T.: General theory of fuzzy connectedness segmentations. J. Math. Imaging Vis. 55(3), 304–342 (2016)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Ciesielski, K.C., Strand, R., Malmberg, F., Saha, P.K.: Efficient algorithm for finding the exact minimum barrier distance. Comput. Vis. Image Underst. 123, 53–64 (2014)

    Article  Google Scholar 

  11. 11.

    Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts: thinnings, shortest path forests, and topological watersheds. Trans. Pattern Anal. Mach. Intell. 32, 925–939 (2010)

    Article  Google Scholar 

  12. 12.

    Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts: minimum spanning forests and the drop of water principle. IEEE Trans. Pattern Anal. Mach. Intell. 31(8), 1362–1374 (2008)

    Article  Google Scholar 

  13. 13.

    de Moraes Braz, C., Miranda, P.A.V.: Image segmentation by image foresting transform with geodesic band constraints. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 4333–4337 (2014)

  14. 14.

    de Moraes Braz, C., Miranda, P.A.V., Ciesielski, K.C., Cappabianco, F.A.M.: Graph-based segmentation with local band constraints. In: Couprie, M., Cousty, J., Kenmochi, Y., Mustafa, N. (eds.) Discrete Geometry for Computer Imagery, pp. 155–166. Springer, Cham (2019)

    Google Scholar 

  15. 15.

    Falcão, A.X., Stolfi, J., Lotufo, R.A.: The image foresting transform: theory, algorithms, and applications. IEEE TPAMI 26(1), 19–29 (2004)

    Article  Google Scholar 

  16. 16.

    Falcão, A.X., Udupa, J.K., Samarasekera, S., Sharma, S., Hirsch, B.E., Lotufo, R.A.: User-steered image segmentation paradigms: live-wire and live-lane. Graph. Models Image Proc. 60, 233–260 (1998)

    Article  Google Scholar 

  17. 17.

    Freedman, D., Zhang, T.: Interactive graph cut based segmentation with shape priors. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 1, pp. 755–762. IEEE (2005)

  18. 18.

    Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006)

    Article  Google Scholar 

  19. 19.

    Gulshan, V., Rother, C., Criminisi, A., Blake, A., Zisserman, A.: Geodesic star convexity for interactive image segmentation. In: Proceedings of Computer Vision and Pattern Recognition, pp. 3129–3136 (2010)

  20. 20.

    Isack, H., Veksler, O., Sonka, M.,Boykov, Y.: Hedgehog shape priors for multi-object segmentation. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2434–2442 (2016)

  21. 21.

    Isack, H.N., Boykov, Y., Veksler, O.: A-expansion for multiple “hedgehog” shapes. CoRR, arXiv:1602.01006 (2016)

  22. 22.

    Leon, L.M.C., Miranda, P.A.V.D.: Multi-object segmentation by hierarchical layered oriented image foresting transform. In: 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 79–86 (2017)

  23. 23.

    Lézoray, O., Grady, L.: Image Processing and Analysis with Graphs: Theory and Practice. CRC Press, California (2012)

    Google Scholar 

  24. 24.

    Li, X., Chen, J., Fan, H.: Interactive image segmentation based on grow cut of two scale graphs. In: Zhang, W., Yang, X., Xu, Z., An, P., Liu, Q., Lu, Y. (eds.) Advances on Digital Television and Wireless Multimedia Communications, pp. 90–95. Springer, Berlin (2012)

    Google Scholar 

  25. 25.

    Madabhushi, A., Udupa, J.K.: Interplay between intensity standardization and inhomogeneity correction in MR image processing. IEEE Trans. Med. Imaging 24(5), 561–576 (2005)

    Article  Google Scholar 

  26. 26.

    Mansilla, L.A.C., Miranda, P.A.V.: Oriented image foresting transform segmentation: connectivity constraints with adjustable width. In: 29th SIBGRAPI Conference on Graphics, Patterns and Images, pp. 289–296 (2016)

  27. 27.

    Mansilla, L.A.C., Miranda, P.A.V., Cappabianco, F.A.M.: Oriented image foresting transform segmentation with connectivity constraints. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 2554–2558 (2016)

  28. 28.

    Mansilla, L.A.C., Miranda, P.A.V.: Image segmentation by oriented image foresting transform: handling ties and colored images. In 18th International Conference on Digital Signal Processing, Greece, pp. 1–6 (2013)

  29. 29.

    Mansilla, L.A.C., Miranda, P.A.V.: Image segmentation by oriented image foresting transform with geodesic star convexity. In: 15th International Conference on Computer Analysis of Images and Patterns (CAIP), York, UK, vol. 8047, pp. 572–579 (2013)

  30. 30.

    Miranda, P.A.V., Mansilla, L.A.C.: Oriented image foresting transform segmentation by seed competition. IEEE Trans. Image Process. 23(1), 389–398 (2014)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. USA 93(4), 1591–5 (1996)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Xu, Y., Géraud, T., Najman, L.: Context-based energy estimator: Application to object segmentation on the tree of shapes. In: 2012 19th IEEE International Conference on Image Processing, pp. 1577–1580 (2012)

Download references

Author information



Corresponding author

Correspondence to Paulo A. V. Miranda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Thanks to CNPq (313554/2018-8, 486988/2013-9, FINEP 1266/13), FAPESP (2014/12236-1, 2016/21591-5), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, and NAP eScience - PRP - USP for funding.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Moraes Braz, C., Miranda, P.A., Ciesielski, K.C. et al. Optimum Cuts in Graphs by General Fuzzy Connectedness with Local Band Constraints. J Math Imaging Vis 62, 659–672 (2020). https://doi.org/10.1007/s10851-020-00953-w

Download citation


  • Boundary band constraint
  • Hedgehog shape prior
  • Image foresting transform
  • Graph-cut segmentation