Advertisement

Journal of Mathematical Imaging and Vision

, Volume 60, Issue 7, pp 1065–1080 | Cite as

Cracks Detection Using Iterative Phase Congruency

  • Xiaojuan Deng
  • Feifei Zuo
  • Hongwei Li
Article
  • 85 Downloads

Abstract

Extracting linear (planar) structures from digital images is often needed in computed tomography (CT) applications such as cracks detection for industrial objects. The difficulties of this task lie in the fact that usually strong and very weak structures coexist in reconstructed CT images. Strong noise and artifacts make the problem even more challenging. In this paper, an efficient approach based on the concept of phase congruency (PC) is proposed for linear as well as planar structures extraction. The most innovative part of our approach is the new concept of iterative PC, which could be thought of as being the extension of the classical PC. We tested the proposed approach on a three-dimensional volume image reconstructed by our laboratory for cracks detection. Experiments show that, for cylindrical objects damaged by radial distributed cracks, our approach outperforms other popular approaches in terms of accuracy or efficiency.

Keywords

Linear structure Planar structure Iterative phase congruency Crack detection Computed tomography Image segmentation 

Notes

Acknowledgements

Thanks for the support of the National Natural Science Foundation of China (NSFC) (61371195). And the authors are grateful to Beijing Higher Institution Engineering Research Center of Testing and Imaging as well as Beijing Advanced Innovation Center for Imaging Technology for funding this research work.

References

  1. 1.
    Kirbas, C., Quek, F.: A review of vessel extraction techniques and algorithms. ACM Comput. Surv. (CSUR) 36(2), 81–121 (2004)CrossRefGoogle Scholar
  2. 2.
    Merveille, O., Talbot, H., Najman, L., Passat, N.: Curvilinear structure analysis by ranking the orientation responses of path operators. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2017)Google Scholar
  3. 3.
    Wei, Q., Leblon, B., La Rocque, A.: On the use of X-ray computed tomography for determining wood properties: a review. Can. J. For. Res. 41(11), 2120–2140 (2011)CrossRefGoogle Scholar
  4. 4.
    Maret, D., Telmon, N., Peters, O.A., Lepage, B., Treil, J., Inglèse, J.M., Peyre, A., Kahn, J.L., Sixou, M.: Effect of voxel size on the accuracy of 3D reconstructions with cone beam CT. Dentomaxillofac. Radiol. 41(8), 649–655 (2012)CrossRefGoogle Scholar
  5. 5.
    Rose, S.D., Andersen, M.S., Sidky, E.Y., Pan, X.: TV-constrained incremental algorithms for low-intensity CT image reconstruction. In: Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2015 IEEE, pp. 1–3. IEEE (2015)Google Scholar
  6. 6.
    Herman, G.T.: Fundamentals of computerized tomography: image reconstruction from projections, vol. 29. Springer, Berlin (2009)MATHCrossRefGoogle Scholar
  7. 7.
    Edward Boas, F., Fleischmann, D.: CT artifacts: causes and reduction techniques. Imag. Med. 4(2), 229–240 (2012)CrossRefGoogle Scholar
  8. 8.
    Huo, Q., Li, J., Yao, L.: Removing ring artefacts in CT images via unidirectional relative variation model. Electron. Lett. 52(22), 1838–1839 (2016)CrossRefGoogle Scholar
  9. 9.
    Jin, P., Bouman, C.A., Sauer, K.D.: A model-based image reconstruction algorithm with simultaneous beam hardening correction for X-ray CT. IEEE Trans. Comput. Imag. 1(3), 200–216 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Zhao, Y., Li, M.: Iterative beam hardening correction for multi-material objects. PloS ONE 10(12), e0144607 (2015)CrossRefGoogle Scholar
  11. 11.
    Li, M., Zhao, Y., Zhang, P.: Attenuator design method for dedicated whole-core CT. Opt. Express 24(20), 22749–22765 (2016)CrossRefGoogle Scholar
  12. 12.
    Vala, M.H.J., Baxi, A.: A review on Otsu image segmentation algorithm. Int. J. Adv. Res. Comput. Eng. Technol. (IJARCET) 2(2), 387 (2013)Google Scholar
  13. 13.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 130–137. Springer (1998)Google Scholar
  14. 14.
    Krissian, K., Malandain, G., Ayache, N., Vaillant, R., Trousset, Y.: Model-based detection of tubular structures in 3D images. Comput. Vis. Image Underst. 80(2), 130–171 (2000)MATHCrossRefGoogle Scholar
  15. 15.
    Bauer, C., Simpson, H.: Segmentation of 3D tubular tree structures in medical images. Ph.D. thesis, Graz University of Technology (2010)Google Scholar
  16. 16.
    Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7(3), 359–369 (1998)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Vasilevskiy, A., Siddiqi, K.: Flux maximizing geometric flows. IEEE Trans. Pattern Anal. Mach. Intell. 24(12), 1565–1578 (2002)MATHCrossRefGoogle Scholar
  18. 18.
    Descoteaux, M., Collins, L., Siddiqi, K.: A multi-scale geometric flow for segmenting vasculature in MRI. In: Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis, pp. 169–180. Springer (2004)Google Scholar
  19. 19.
    Bankhead, P., Scholfield, C.N., McGeown, J.G., Curtis, T.M.: Fast retinal vessel detection and measurement using wavelets and edge location refinement. PloS ONE 7(3), e32435 (2012)CrossRefGoogle Scholar
  20. 20.
    Manniesing, R., Velthuis, B.K., Van Leeuwen, M.S., Van Der Schaaf, I.C., Van Laar, P.J., Niessen, W.J.: Level set based cerebral vasculature segmentation and diameter quantification in CT angiography. Med. Image Anal. 10(2), 200–214 (2006)CrossRefGoogle Scholar
  21. 21.
    Manniesing, R., Viergever, M.A., Niessen, W.J.: Vessel axis tracking using topology constrained surface evolution. IEEE Trans. Med. Imaging 26(3), 309–316 (2007)CrossRefGoogle Scholar
  22. 22.
    Franchini, E., Morigi, S., Sgallari, F.: Segmentation of 3D tubular structures by a PDE-based anisotropic diffusion model. In: Mathematical Methods for Curves and Surfaces, pp. 224–241 (2010)Google Scholar
  23. 23.
    Zhao, Y., Rada, L., Chen, K., Harding, S.P.: Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Trans. Med. Imaging 34(9), 1797–1807 (2015)CrossRefGoogle Scholar
  24. 24.
    Wang, L., Zhang, H., He, K., Chang, Y., Yang, X.: Active contours driven by multi-feature Gaussian distribution fitting energy with application to vessel segmentation. PloS ONE 10(11), e0143105 (2015)CrossRefGoogle Scholar
  25. 25.
    Zhao, Y., Zhao, J., Yang, J., Liu, Y., Zhao, Y., Zheng, Y., Xia, Y., Wang, Y.: Saliency driven vasculature segmentation with infinite perimeter active contour model. Neurocomputing 259, 201–209 (2017)Google Scholar
  26. 26.
    Chen, D., Cohen, L.D., Mirebeau, J.-M.: Vessel extraction using anisotropic minimal paths and path score. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 1570–1574. IEEE (2014)Google Scholar
  27. 27.
    Chen, Y., Zhang, Y., Yang, J., Cao, Q., Yang, G., Chen, J., Shu, H., Luo, L., Coatrieux, J.-L., Feng, Q.: Curve-like structure extraction using minimal path propagation with backtracking. IEEE Trans. Image Process. 25(2), 988–1003 (2016)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Chen, D., Mirebeau, J.-M., Cohen, L.D.: Global Minimum for a Finsler elastica minimal path approach. Int. J. Comput. Vis. 122(3), 458–483 (2016)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Chen, D., Mirebeau, J.-M., Cohen, L.D.: essel tree extraction using radius-lifted keypoints searching scheme and anisotropic fast marching method. J. Algorithms Comput. Technol. 10(4), 224–234 (2016)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Becker, C., Rigamonti, R., Lepetit, V., Fua, P.: Supervised feature learning for curvilinear structure segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 526–533. Springer (2013)Google Scholar
  31. 31.
    Zhu, C., Zou, B., Xiang, Y., Cui, J., Wu, H.: An improved retinal vessel segmentation method based on supervised learning. In: 2015 14th International Conference on Computer-Aided Design and Computer Graphics (CAD/Graphics), pp. 216–217. IEEE (2015)Google Scholar
  32. 32.
    Roychowdhury, S., Koozekanani, D.D., Parhi, K.K.: Blood vessel segmentation of fundus images by major vessel extraction and subimage classification. IEEE J. Biomed. Health Inform. 19(3), 1118–1128 (2015)Google Scholar
  33. 33.
    Li, Q., Feng, B., Xie, L.P., Liang, P., Zhang, H., Wang, T.: A cross-modality learning approach for vessel segmentation in retinal images. IEEE Trans. Med. Imaging 35(1), 109–118 (2016)CrossRefGoogle Scholar
  34. 34.
    Zhu, C., Zou, B., Xiang, Y., Cui, J., Hui, W.: An ensemble retinal vessel segmentation based on supervised learning in fundus images. Chin. J. Electron. 25(3), 503–511 (2016)CrossRefGoogle Scholar
  35. 35.
    Fu, H., Xu, Y., Wong, D.W.K., Liu, J.: Retinal vessel segmentation via deep learning network and fully-connected conditional random fields. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 698–701. IEEE (2016)Google Scholar
  36. 36.
    Paweł, L., Krawiec, K.: Segmenting retinal blood vessels with deep neural networks. IEEE Trans. Med. Imaging 35(11), 2369–2380 (2016)CrossRefGoogle Scholar
  37. 37.
    Orlando, J.I., Prokofyeva, E., Blaschko, M.B.: A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images. IEEE Trans. Biomed. Eng. 64(1), 16–27 (2017)CrossRefGoogle Scholar
  38. 38.
    Kovesi, P.: Image features from phase congruency. Videre J. Comput. Vis. Res. 1(3), 1–26 (1999)Google Scholar
  39. 39.
    Kovesi, P.: Matlab functions for computer vision and image analysis. School of Computer Science and Software Engineering, The University of Western Australia. http://www.csse.uwa.edu.au/pk/research/matlabfns (2004)
  40. 40.
    Tagore, M.R.N, Kande, G.B., Rao, E.V.K., Rao, B.P.: Segmentation of retinal vasculature using phase congruency and hierarchical clustering. In: 2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 361–366. IEEE (2013)Google Scholar
  41. 41.
    Awan, R., Rajpoot, K.: Investigation of 3D and 4D feature extraction from echocardiography images using local phase based method. In: 2014 12th International Conference on Frontiers of Information Technology (FIT), pp. 251–256. IEEE (2014)Google Scholar
  42. 42.
    Ahmed, M.I., Amin, M.A., Poon, B., Yan, H.: Retina based biometric authentication using phase congruency. Int. J. Mach. Learn. Cybern. 5(6), 933–945 (2014)CrossRefGoogle Scholar
  43. 43.
    Mapayi, T., Viriri, S., Tapamo, J.-R.: Retinal vessel segmentation based on phase congruence and GLCM sum-entropy. In: 2015 IEEE International Conference on Industrial Technology (ICIT), pp. 1759–1764. IEEE (2015)Google Scholar
  44. 44.
    Oppenheim, A.V., Lim, J.S.: The importance of phase in signals. Proc. IEEE 69(5), 529–541 (1981)CrossRefGoogle Scholar
  45. 45.
    Morrone, M.C., Owens, R.A.: Feature detection from local energy. Pattern Recognit. Lett. 6(5), 303–313 (1987)CrossRefGoogle Scholar
  46. 46.
    Felsberg, M., Sommer, G.: A new extension of linear signal processing for estimating local properties and detecting features. In: Mustererkennung 2000, pp. 195–202. Springer (2000)Google Scholar
  47. 47.
    Nguyen, H.N., Kam, T.Y., Cheng, P.Y.: Automatic crack detection from 2D images using a crack measure-based B-spline level set model. Multidimens. Syst. Signal Process. 29(1), 203–244 (2018)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Bhujle, H., Chaudhuri, S.: Novel speed-up strategies for non-local means denoising with patch and edge patch based dictionaries. IEEE Trans. Image Process. 23(1), 356–365 (2014)MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Rosin, P.L.: Unimodal thresholding. Pattern Recognit. 34(11), 2083–2096 (2001)MATHCrossRefGoogle Scholar
  51. 51.
    Powers, D.M.: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. J. Mach. Learn. Technol. 2(1), 37–63 (2011)MathSciNetGoogle Scholar
  52. 52.
    Meyer-Spradow, J., Ropinski, T., Mensmann, J., Hinrichs, K.: Voreen: a rapid-prototyping environment for ray-casting-based volume visualizations. IEEE Comput. Graph. Appl. 29(6), 6–13 (2009)CrossRefGoogle Scholar
  53. 53.
    Heijmans, H., Buckley, M., Talbot, H.: Path openings and closings. J. Math. Imaging Vis. 22(2), 107–119 (2005)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Talbot, H., Appleton, B.: Efficient complete and incomplete path openings and closings. Image Vis. Comput. 25(4), 416–425 (2007)CrossRefGoogle Scholar
  55. 55.
    Hendriks, C.L.L.: Constrained and dimensionality-independent path openings. IEEE Trans. Image Process. 19(6), 1587–1595 (2010)MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    Kovesi, P.: Symmetry and asymmetry from local phase. In: Tenth Australian Joint Converence on Artificial Intelligence, pp. 2–4 (1997)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematical SciencesCapital Normal UniversityBeijingChina
  2. 2.Beijing Advanced Innovation Center for Imaging TechnologyCapital Normal UniversityBeijingChina
  3. 3.LargeV Instrument Corp. Ltd.BeijingChina

Personalised recommendations