Plane-Based Resection for Metric Affine Cameras



We study the problem of resecting the metric affine camera models from at least three non-colinear point correspondences. A direct application is plane pose estimation. We consider the three most popular metric affine cameras, namely the paraperspective, weak-perspective and orthographic cameras. For each model, we give an algebraic procedure which finds the optimal solution, where by optimal we mean the global minimizer of the reprojection error under the Euclidean norm. Our algebraic procedures cover both the minimal case of three points and the redundant cases of more than three points. They always return two solutions, as the problem has a two-way ambiguity on the rotation and translation for the three cameras in the general case. The scale of the paraperspective and weak-perspective cameras is, however, recovered uniquely. The orthographic case is the most involved and has not been solved analytically in the literature. We characterize its intrinsic complexity by showing that it reduces to finding the roots of an irreducible and non-solvable by radicals sextic polynomial. The previous algorithms for the paraperspective and weak-perspective cases have singularities, while, in contrast, our algebraic procedures do not.


Resection Pose Affine camera Optimal Polynomial Plane 



This research has received funding from the EU’s FP7 through the ERC research Grant 307483 FLEXABLE. We thank Florian Bugarin and Didier Henrion for their help in using Gloptipoly.


  1. 1.
    Arun, K., Huang, T., Blostein, S.: Least-squares fitting of two 3-D points sets. IEEE Trans. Pattern Anal. Mach. Intell. 9(5), 698–700 (1987)CrossRefGoogle Scholar
  2. 2.
    Bartoli, A., Gérard, Y., Chadebecq, F., Collins, T., Pizarro, D.: Shape-from-template. IEEE Trans. Pattern Anal. Mach. Intell. 37(10), 2099–2118 (2015)CrossRefGoogle Scholar
  3. 3.
    Cardoso, J.R., Zietak, K.: On a sub-Stiefel Procrustes problem arising in computer vision. Numer. Linear Algebra Appl. 22(3), 523–547 (2015)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Collins, T., Bartoli, A.: Locally affine and planar deformable surface reconstruction from video. In: International Workshop on Vision, Modeling and Visualization (2010)Google Scholar
  5. 5.
    Collins, T., Bartoli, A.: Infinitesimal plane-based pose estimation. Int. J. Comput. Vis. 109(3), 252–286 (2014)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Collins, T., Bartoli, A.: Planar structure-from-motion with affine camera models: closed-form solutions, ambiguities and degeneracy analysis. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1237–1255 (2017)CrossRefGoogle Scholar
  7. 7.
    Faugeras, O., Luong, Q.-T., Papadopoulo, T.: The Geometry of Multiple Images. MIT Press, Cambridge (2001)Google Scholar
  8. 8.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Comput. Vis. Graph. Image Process. 24(6), 381–395 (1981)MathSciNetGoogle Scholar
  9. 9.
    Hagedorn, T.R.: General formulas for solving solvable sextic equations. J. Algebra 233(2), 704–757 (2000)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Haralick, R.M., Joo, H., Lee, C., Zhuang, X., Vaidya, V.G., Kim, M.B.: Pose estimation from corresponding point data. IEEE Trans. Syst. Man Cybern. 6(19), 1426–1446 (1989)CrossRefGoogle Scholar
  11. 11.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  12. 12.
    Henrion, D., Lasserre, J.B., Loefberg, J.: Gloptipoly 3: moments, optimization and semidefinite programming. Optim. Methods Softw. 24(4–5), 761–779 (2009)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Horaud, R., Dornaika, F., Lamiroy, B., Christy, S.: Object pose: the link between weak perspective, paraperspective and full perspective. Int. J. Comput. Vis. 22(2), 173–189 (1997)CrossRefGoogle Scholar
  14. 14.
    Horn, B.K.P., Hilden, H.M., Negahdaripour, S.: Closed-form solution of absolute orientation using orthonormal matrices. J. Opt. Soc. Am. A 5(7), 1127–1135 (1988)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: International Symposium on Mixed and Augmented Reality (2007)Google Scholar
  16. 16.
    Oberkampf, D., DeMenthon, D.F., Davis, L.S.: Iterative pose estimation using coplanar feature points. Comput. Vis. Image Underst. 63(3), 495–511 (1996)CrossRefGoogle Scholar
  17. 17.
    Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from internet photo collections. Int. J. Comput. Vis. 80(2), 189–201 (2008)CrossRefGoogle Scholar
  18. 18.
    Steger, C.: Algorithms for the orthographic-\(n\)-point problem. J. Math. Imaging Vis. (2017).
  19. 19.
    Steger, C.: A comprehensive and versatile camera model for cameras with tilt lenses. Int. J. Comput. Vis. 123(2), 121–159 (2017b)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Stewart, I.: Galois Theory, 4th edn. CRC Press, Boca Raton (2015)MATHGoogle Scholar
  21. 21.
    Taylor, J., Jepson, A.D., Kutulakos, K.: Non-rigid structure from locally-rigid motion. In: International Conference on Computer Vision and Pattern Recognition (2010)Google Scholar
  22. 22.
    Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13(4), 376–380 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The ENCOV Group (Endoscopy and Computer Vision)Université Clermont Auvergne and CNRS, Institut PascalAubièreFrance
  2. 2.IRCADStrasbourgFrance

Personalised recommendations