# Plane-Based Resection for Metric Affine Cameras

- 8 Downloads

## Abstract

We study the problem of resecting the metric affine camera models from at least three non-colinear point correspondences. A direct application is plane pose estimation. We consider the three most popular metric affine cameras, namely the paraperspective, weak-perspective and orthographic cameras. For each model, we give an algebraic procedure which finds the optimal solution, where by optimal we mean the global minimizer of the reprojection error under the Euclidean norm. Our algebraic procedures cover both the minimal case of three points and the redundant cases of more than three points. They always return two solutions, as the problem has a two-way ambiguity on the rotation and translation for the three cameras in the general case. The scale of the paraperspective and weak-perspective cameras is, however, recovered uniquely. The orthographic case is the most involved and has not been solved analytically in the literature. We characterize its intrinsic complexity by showing that it reduces to finding the roots of an irreducible and non-solvable by radicals sextic polynomial. The previous algorithms for the paraperspective and weak-perspective cases have singularities, while, in contrast, our algebraic procedures do not.

### Keywords

Resection Pose Affine camera Optimal Polynomial Plane## Notes

### Acknowledgements

This research has received funding from the EU’s FP7 through the ERC research Grant 307483 FLEXABLE. We thank Florian Bugarin and Didier Henrion for their help in using Gloptipoly.

### References

- 1.Arun, K., Huang, T., Blostein, S.: Least-squares fitting of two 3-D points sets. IEEE Trans. Pattern Anal. Mach. Intell.
**9**(5), 698–700 (1987)CrossRefGoogle Scholar - 2.Bartoli, A., Gérard, Y., Chadebecq, F., Collins, T., Pizarro, D.: Shape-from-template. IEEE Trans. Pattern Anal. Mach. Intell.
**37**(10), 2099–2118 (2015)CrossRefGoogle Scholar - 3.Cardoso, J.R., Zietak, K.: On a sub-Stiefel Procrustes problem arising in computer vision. Numer. Linear Algebra Appl.
**22**(3), 523–547 (2015)MathSciNetCrossRefMATHGoogle Scholar - 4.Collins, T., Bartoli, A.: Locally affine and planar deformable surface reconstruction from video. In: International Workshop on Vision, Modeling and Visualization (2010)Google Scholar
- 5.Collins, T., Bartoli, A.: Infinitesimal plane-based pose estimation. Int. J. Comput. Vis.
**109**(3), 252–286 (2014)MathSciNetCrossRefMATHGoogle Scholar - 6.Collins, T., Bartoli, A.: Planar structure-from-motion with affine camera models: closed-form solutions, ambiguities and degeneracy analysis. IEEE Trans. Pattern Anal. Mach. Intell.
**39**(6), 1237–1255 (2017)CrossRefGoogle Scholar - 7.Faugeras, O., Luong, Q.-T., Papadopoulo, T.: The Geometry of Multiple Images. MIT Press, Cambridge (2001)Google Scholar
- 8.Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Comput. Vis. Graph. Image Process.
**24**(6), 381–395 (1981)MathSciNetGoogle Scholar - 9.Hagedorn, T.R.: General formulas for solving solvable sextic equations. J. Algebra
**233**(2), 704–757 (2000)MathSciNetCrossRefMATHGoogle Scholar - 10.Haralick, R.M., Joo, H., Lee, C., Zhuang, X., Vaidya, V.G., Kim, M.B.: Pose estimation from corresponding point data. IEEE Trans. Syst. Man Cybern.
**6**(19), 1426–1446 (1989)CrossRefGoogle Scholar - 11.Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
- 12.Henrion, D., Lasserre, J.B., Loefberg, J.: Gloptipoly 3: moments, optimization and semidefinite programming. Optim. Methods Softw.
**24**(4–5), 761–779 (2009)MathSciNetCrossRefMATHGoogle Scholar - 13.Horaud, R., Dornaika, F., Lamiroy, B., Christy, S.: Object pose: the link between weak perspective, paraperspective and full perspective. Int. J. Comput. Vis.
**22**(2), 173–189 (1997)CrossRefGoogle Scholar - 14.Horn, B.K.P., Hilden, H.M., Negahdaripour, S.: Closed-form solution of absolute orientation using orthonormal matrices. J. Opt. Soc. Am. A
**5**(7), 1127–1135 (1988)MathSciNetCrossRefGoogle Scholar - 15.Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: International Symposium on Mixed and Augmented Reality (2007)Google Scholar
- 16.Oberkampf, D., DeMenthon, D.F., Davis, L.S.: Iterative pose estimation using coplanar feature points. Comput. Vis. Image Underst.
**63**(3), 495–511 (1996)CrossRefGoogle Scholar - 17.Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from internet photo collections. Int. J. Comput. Vis.
**80**(2), 189–201 (2008)CrossRefGoogle Scholar - 18.Steger, C.: Algorithms for the orthographic-\(n\)-point problem. J. Math. Imaging Vis. (2017). https://doi.org/10.1007/s10851-017-0762-0
- 19.Steger, C.: A comprehensive and versatile camera model for cameras with tilt lenses. Int. J. Comput. Vis.
**123**(2), 121–159 (2017b)MathSciNetCrossRefGoogle Scholar - 20.Stewart, I.: Galois Theory, 4th edn. CRC Press, Boca Raton (2015)MATHGoogle Scholar
- 21.Taylor, J., Jepson, A.D., Kutulakos, K.: Non-rigid structure from locally-rigid motion. In: International Conference on Computer Vision and Pattern Recognition (2010)Google Scholar
- 22.Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell.
**13**(4), 376–380 (1991)CrossRefGoogle Scholar