Skip to main content
Log in

Regularized Non-local Total Variation and Application in Image Restoration

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In the usual non-local variational models, such as the non-local total variations, the image is regularized by minimizing an energy term that penalizes gray-levels discrepancy between some specified pairs of pixels; a weight value is computed between these two pixels to penalize their dissimilarity. In this paper, we impose some regularity to those weight values. More precisely, we minimize a function involving a regularization term, analogous to an \(H^1\) term, on weights. Doing so, the finite differences defining the image regularity depend on their environment. When the weights are difficult to define, they can be restored by the proposed stable regularization scheme. We provide all the details necessary for the implementation of a PALM algorithm with proved convergence. We illustrate the ability of the model to restore relevant unknown edges from the neighboring edges on an image inpainting problem. We also argue on inpainting, zooming and denoising problems that the model better recovers thin structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. We use \(r=5\) in the experiments.

  2. In the experiments, we consider 4-connectivity: \({{\mathcal {N}}}=\{(1,0),(0,1)\}\).

  3. In the experiments, we use \(K=90\).

  4. Notice that similar properties have been observed in [18] for the non-local mean: Small details such as thin lines can fade away when using large patches.

  5. We are aware of the fact that designing a good stopping criterion would permit to save time. However, since the paper presents a new model, we preferred to loose computational time in order to obtain results that truly reflect the behavior of this model.

  6. Note that, if all are in the missing domain, then the algorithm assigns weights uniformly equal to \(1/|{{\mathcal {B}}}|\).

  7. Again, we just take a very large number of iteration for which we have convergence.

  8. Again, we just take a very large number of iteration for which we have convergence.

  9. Notice that a similar upper bound is provided in [10] for the usual finite differences.

References

  1. Arias, P., Caselles, V., Sapiro, G.: A variational framework for non-local image inpainting. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds.) Energy Minimization Methods in Computer Vision and Pattern Recognition, pp. 345–358. Springer, Berlin (2009)

  2. Arias, P., Facciolo, G., Caselles, V., Sapiro, G.: A variational framework for exemplar-based image inpainting. Int. J. Comput. Vis. 93(3), 319–347 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aujol, J.F., Dossal, C.: Stability of over-relaxations for the forward–backward algorithm, application to FISTA. SIAM J. Optim. 25(4), 2408–2433 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aujol, J.F., Ladjal, S., Masnou, S.: Exemplar-based inpainting from a variational point of view. SIAM J. Math. Anal. 42(3), 1246–1285 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ballester, C., Bertalmio, M., Caselles, V., Sapiro, G., Verdera, J.: Filling-in by joint interpolation of vector fields and gray levels. IEEE Trans. Image Process. 10(8), 1200–1211 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bauschke, H.H., Burachik, R., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H.: Fixed-Point Algorithms for Inverse Problems in Science and Engineering, vol. 49. Springer Science & Business Media, New York (2011)

    MATH  Google Scholar 

  7. Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. Serie A 146(1–2), 459–494 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Burger, M., He, L., Schönlieb, C.B.: Cahn–Hilliard inpainting and a generalization for grayvalue images. SIAM J. Imaging Sci. 2(4), 1129–1167 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1–2), 89–97 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Chan, T.F., Shen, J.: Nontexture inpainting by curvature-driven diffusions. J. Vis. Commun. Image Represent. 12(4), 436–449 (2001)

    Article  Google Scholar 

  12. Chen, A., Bertozzi, A.L., Ashby, P.D., Getreuer, P., Lou, Y.: Enhancement and recovery in atomic force microscopy images. In: Andrews, T.D. (ed.) Excursions in Harmonic Analysis, vol. 2, pp. 311–332. Springer, Berlin (2013)

  13. Chen, C., Chan, R.H., Ma, S., Yang, J.: Inertial proximal admm for linearly constrained separable convex optimization. SIAM J. Imaging Sci. 8(4), 2239–2267 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cho, M., Mishra, K.V., Cai, J.F., Xu, W.: Block iterative reweighted algorithms for super-resolution of spectrally sparse signals. IEEE Signal Process. Lett. 22(12), 2319–2313 (2015)

    Article  Google Scholar 

  15. Chouzenoux, E., Pesquet, J.C., Repetti, A.: A block coordinate variable metric forward–backward algorithm. J. Glob. Optim. 66, 1–29 (2016)

  16. Condat, L.: Fast projection onto the simplex and the \(\ell _{1}\) ball. Math. Program. 158(1), 575–585 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Deledalle, C.A., Duval, V., Salmon, J.: Non-local methods with shape-adaptive patches (NLM-SAP). J. Math. Imaging Vis. 43(2), 103–120 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Duval, V., Aujol, J.F., Gousseau, Y.: On the parameter choice for the non-local means. CMLA Preprint (2010)

  19. Elmoataz, A., Lezoray, O., Bougleux, S.: Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing. IEEE Trans. Image Process. 17(7), 1047–1060 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Facciolo, G., Arias, P., Caselles, V., Sapiro, G.: Exemplar-based interpolation of sparsely sampled images. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds.) Energy Minimization Methods in Computer Vision and Pattern Recognition, pp. 331–344. Springer, Berlin (2009)

  21. Fedorov, V., Facciolo, G., Arias, P.: Variational framework for non-local inpainting. Image Process. On Line 5, 362–386 (2015)

    Article  MathSciNet  Google Scholar 

  22. Garcia, D.: Robust smoothing of gridded data in one and higher dimensions with missing values. Comput. Stat. Data Anal. 54(4), 1167–1178 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gilboa, G., Osher, S.: Nonlocal linear image regularization and supervised segmentation. Multiscale Model. Simul. 6(2), 595–630 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jung, M., Vese, L.A.: Nonlocal variational image deblurring models in the presence of Gaussian or impulse noise. In: Tai, XC., Mørken, K., Lysaker, M., Lie, K.A. (eds.) Scale Space and Variational Methods in Computer Vision, pp. 401–412. Springer, Berlin (2009)

  26. Kanizsa, G.: Organization in Vision: Essays on Gestalt perception. Praeger, Westport (1979)

    Google Scholar 

  27. Kheradmand, A., Milanfar, P.: A general framework for regularized, similarity-based image restoration. IEEE Trans. Image Process. 23(12), 5136–5151 (2014)

    Article  MathSciNet  Google Scholar 

  28. Lebrun, M., Buades, A., Morel, J.M.: Implementation of the “Non-Local Bayes” (NL-Bayes) image denoising algorithm. Image Process. On Line 3, 1–42 (2013)

    Article  Google Scholar 

  29. Lebrun, M., Buades, A., Morel, J.M.: A nonlocal Bayesian image denoising algorithm. SIAM J. Imaging Sci. 6(3), 1665–1688 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Levina, E., Bickel, P.J.: Texture synthesis and nonparametric resampling of random fields. Ann. Stat. 34, 1751–1773 (2006)

  31. Lou, Y., Zhang, X., Osher, S., Bertozzi, A.: Image recovery via nonlocal operators. J. Sci. Comput. 42(2), 185–197 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mumford, D., Nitzberg, M., Shiota, T.: Filtering, Segmentation and Depth. Lecture Notes in Computer Science, vol. 662. Springer-Verlag New York, Inc. Secaucus, NJ, USA (1993)

  33. Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. Serie A 103(1), 127–152 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ouyang, Y., Chen, Y., Lan, G., Pasiliao Jr., E.: An accelerated linearized alternating direction method of multipliers. SIAM J. Imaging Sci. 8(1), 644–681 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Peyré, G.: Sparse modeling of textures. J. Math. Imaging Vis. 34(1), 17–31 (2009)

    Article  MathSciNet  Google Scholar 

  36. Peyré, G., Bougleux, S., Cohen, L.: Non-local regularization of inverse problems. In: The 10th European Conference on Computer Vision, pp. 57–68. Springer (2008)

  37. Peyré, G., Bougleux, S., Cohen, L.D.: Non-local regularization of inverse problems. Inverse Probl. Imaging 5(2), 511–530 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Pizarro, L., Mrázek, P., Didas, S., Grewenig, S., Weickert, J.: Generalised nonlocal image smoothing. Int. J. Comput. Vis. 90(1), 62–87 (2010)

    Article  MathSciNet  Google Scholar 

  39. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  40. Schönlieb, Cb, Bertozzi, A.: Unconditionally stable schemes for higher order inpainting. Commun. Math. Sci. 9(2), 413–457 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shen, J., Chan, T.F.: Mathematical models for local nontexture inpaintings. SIAM J. Appl. Math. 62(3), 1019–1043 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. Talebi, H., Milanfar, P.: Global image denoising. IEEE Trans. Image Process. 23(2), 755–768 (2014)

    Article  MathSciNet  Google Scholar 

  43. Wang, G., Garcia, D., Liu, Y., De Jeu, R., Dolman, A.J.: A three-dimensional gap filling method for large geophysical datasets: application to global satellite soil moisture observations. Environ. Model. Softw. 30, 139–142 (2012)

    Article  Google Scholar 

  44. Wei, L.Y., Levoy, M.: Fast texture synthesis using tree-structured vector quantization. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 479–488. ACM Press/Addison-Wesley Publishing Co. (2000)

  45. Weiss, P., Blanc-Feraud, L., Aubert, G.: Efficient schemes for total variation minimization under constraints in image processing. SIAM J. Sci. Comput. 31(3), 2047–2080 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Weissman, T., Ordentlich, E., Seroussi, G., Verdú, S., Weinberger, M.J.: Universal discrete denoising: known channel. IEEE Trans. Inf. Theory 51(1), 5–28 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yaroslavsky, L.P., Yaroslavskij, L.: Digital Picture Processing: An Introduction. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  48. Zhang, X., Burger, M., Bresson, X., Osher, S.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM J. Imaging Sci. 3(3), 253–276 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

François Malgouyres would like to thank Julien Rabin for fruitful discussions on the subject and for teaching him how to efficiently perform the projection on the simplex and also would like to thank Prof. Gabriel Peyré for providing his code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Malgouyres.

Additional information

ZL is supported in part by the NSF Grant DMS-1621798.

TZ is partially supported by NSFC 11271049, RGC 12302714 and RFGs of HKBU.

Appendices

Appendices

1.1 TV Under a Max Form

We want to prove that for any \(u\in {\mathbb {R}}^{{\mathcal {P}}}\) and any (fixed) \(v\in {{{\mathcal {U}}}^{{\mathcal {P}}}}\)

$$\begin{aligned} \mathrm{TV}\left( v, u\right) = \max _{\Vert w\Vert _{\infty ,2} \le 1} \left\langle \mathbf {D}_vu, w\right\rangle - \frac{\mu }{2} \Vert w\Vert ^2, \end{aligned}$$
(51)

where we remind that, for \(w\in {\mathbb {R}}^{{{\mathcal {P}}}\times {{\mathcal {B}}}}\), the norm defining the constraint takes the form

$$\begin{aligned} \Vert w \Vert _{\infty ,2} = \max _{p\in {{\mathcal {P}}}} \Vert w_p\Vert , \quad \text{ for }\quad w_p=(w_{p,q})_{q\in {{\mathcal {B}}}} \in {\mathbb {R}}^{{\mathcal {B}}}. \end{aligned}$$
(52)

First, notice that if for all \(p\in {{\mathcal {P}}}\) we know \(w^*_p\in {\mathbb {R}}^{{\mathcal {B}}}\) such that

$$\begin{aligned} w^*_p = {{\mathrm{argmax}}}_{w\in {\mathbb {R}}^{{\mathcal {B}}}: \Vert w\Vert \le 1} \left\langle \mathbf {D}_vu_p, w \right\rangle - \frac{\mu }{2} \Vert w\Vert ^2, \end{aligned}$$
(53)

where we denote \(\mathbf {D}_vu_p = (\mathbf {D}_vu_{p,q})_{q\in {{\mathcal {B}}}} \in {\mathbb {R}}^{{\mathcal {B}}}\); we can deduce from the optimality of all its components \(w^*_p\) that \(w^* = (w^*_p)_{p\in {{\mathcal {P}}}}\in {\mathbb {R}}^{{{\mathcal {P}}}\times {{\mathcal {B}}}}\) satisfies

$$\begin{aligned} w^* = {{\mathrm{argmax}}}_{w\in {\mathbb {R}}^{{{\mathcal {P}}}\times {{\mathcal {B}}}}:\Vert w\Vert _{\infty ,2} \le 1} \left\langle \mathbf {D}_vu, w\right\rangle - \frac{\mu }{2} \Vert w\Vert ^2. \end{aligned}$$
(54)

In order to calculate \(w^*_p\), for a given \(p\in {{\mathcal {P}}}\), we first remark that there exists \(\alpha _p^*\ge 0\) such that

$$\begin{aligned} w^*_p = \alpha _p^* \mathbf {D}_vu_p. \end{aligned}$$
(55)

Then, if we use this expression in (53) we have that

$$\begin{aligned} \alpha _p^*= & {} {{\mathrm{argmax}}}_{\alpha \Vert \mathbf {D}_vu_p\Vert \le 1} \alpha \Vert \mathbf {D}_vu_p\Vert ^2 - \frac{\mu }{2} \alpha ^2 \Vert \mathbf {D}_vu_p\Vert ^2, \\= & {} {{\mathrm{argmax}}}_{\alpha \Vert \mathbf {D}_vu_p\Vert \le 1} ~\alpha \left( 1-\frac{\mu \alpha }{2}\right) ,\\= & {} \left\{ \begin{array}{ll} \frac{1}{ \Vert \mathbf {D}_vu_p\Vert }, &{} \text{ if } \frac{1}{\mu } >\frac{1}{ \Vert \mathbf {D}_vu_p\Vert }, \\ \frac{1}{\mu },&{} \text{ otherwise. } \end{array}\right. \end{aligned}$$

We finally obtain that

$$\begin{aligned} w^*_p = \left\{ \begin{array}{ll} \frac{\mathbf {D}_vu_p}{\mu }, &{} \text{ if } \Vert (\mathbf {D}_vu)_p\Vert \le \mu ,\\ \frac{\mathbf {D}_vu_p}{\Vert (\mathbf {D}_vu)_p\Vert }, &{} \text{ otherwise. } \end{array}\right. \end{aligned}$$
(56)

This corresponds to the expression of \(w^*(u)_p\) in Proposition 1.

If we now use the expression for \(w^*_p\) to calculate the objective function, we find that

$$\begin{aligned} \begin{aligned}&\max _{w\in {\mathbb {R}}^{{\mathcal {B}}}: \Vert w\Vert \le 1} \left\langle \mathbf {D}_vu_p, w \right\rangle - \frac{\mu }{2} \Vert w\Vert ^2\\&\quad = \left\langle \mathbf {D}_vu_p, w^*_p\right\rangle - \frac{\mu }{2} \Vert w^*_p\Vert ^2\\&\quad = \left\{ \begin{array}{ll} \frac{\Vert \mathbf {D}_vu_p\Vert ^2}{2\mu }, &{} \text{ if } \Vert \mathbf {D}_vu_p\Vert \le \mu ,\\ \Vert \mathbf {D}_vu_p\Vert -\frac{\mu }{2}, &{} \text{ otherwise. } \end{array}\right. \\&\quad = \varPsi _\mu (\Vert \mathbf {D}_vu_p \Vert ). \end{aligned} \end{aligned}$$
(57)

As a consequence,

$$\begin{aligned} \begin{aligned}&\max _{\Vert w\Vert _{\infty ,2} \le 1} \left\langle \mathbf {D}_vu, w\right\rangle - \frac{\mu }{2} \Vert w\Vert ^2\\&\quad = \sum _{p\in {{\mathcal {P}}}} \left\langle \mathbf {D}_vu_p, w^*_p\right\rangle - \frac{\mu }{2} \Vert w^*_p\Vert ^2\\&\quad = TV(v,u). \end{aligned} \end{aligned}$$
(58)

1.2 Proof of Proposition 1

Let us first remind and adapt to the context of this paper theorem 1 stated in [33]. This result considers finite-dimensional real vector spaces \(V_1\) and \(V_2\), a linear operator \(A:V_1\rightarrow V_2\), a parameter \(\mu >0\) and a function

$$\begin{aligned} f_\mu (x) = \max _{u\in Q_2} \left\langle Ax, u\right\rangle - \frac{\mu }{2} \Vert u\Vert ^2,\qquad \forall x\in V_1 \end{aligned}$$
(59)

where \(Q_2\subset V_2\) is a closed convex bounded set.

It is stated and proved in [33] that function \(f_\mu \) is continuously differentiable at any \(x\in V_1\). Moreover, if we denote \(u_\mu (x)\) the unique solution of the maximization problem defining \(f_\mu \), we have:

$$\begin{aligned} \nabla f_\mu (x) = A^* u_\mu (x), \end{aligned}$$
(60)

where \(A^*\) is the adjoint of A. Moreover, \(x\longmapsto \ f_\mu (x)\) is Lipschitz continuous with constant

$$\begin{aligned} \frac{\Vert A\Vert _{V_1\rightarrow V_2}}{\mu }, \end{aligned}$$
(61)

where

$$\begin{aligned} \Vert A\Vert _{V_1\rightarrow V_2} = \max _{\Vert x\Vert \le 1} \Vert Ax\Vert . \end{aligned}$$
(62)

Proposition 1 is a straightforward application of this statement to the function

$$\begin{aligned} TV(v,u)=\max _{\Vert w\Vert _{\infty ,2} \le 1} \left\langle \mathbf {D}_vu, w\right\rangle - \frac{\mu }{2} \Vert w\Vert ^2. \end{aligned}$$
(63)

In order to compute the Lipschitz constant, we need however to find a bound for \(\Vert \mathbf {D}_v\Vert _{{\mathbb {R}}^{{\mathcal {P}}}\rightarrow {\mathbb {R}}^{{{\mathcal {P}}}\times {{\mathcal {B}}}}}\). In order to compute it, we consider \(u\in {\mathbb {R}}^{{\mathcal {P}}}\). We have for any \(v\in {{\mathcal {U}}}^{{\mathcal {P}}}\)

$$\begin{aligned} \begin{aligned} \Vert \mathbf {D}_vu\Vert ^2&= \sum _{p\in {{\mathcal {P}}}}\sum _{q\in {{\mathcal {B}}}} v^p_q (u_p - u_{p+q})^2 \\&\le 2 \sum _{p\in {{\mathcal {P}}}}\sum _{q\in {{\mathcal {B}}}} v^p_q \left( u_p^2 + u_{p+q}^2\right) \\&\le 2 \sum _{p\in {{\mathcal {P}}}}u_p^2 + 2 \sum _{q\in {{\mathcal {B}}}} \sum _{p\in {{\mathcal {P}}}}u_{p+q}^2 \\&\le 2 \Vert u\Vert ^2 + 2 |{{\mathcal {B}}}| \Vert u\Vert ^2, \end{aligned} \end{aligned}$$
(64)

where \(|{{\mathcal {B}}}|\) denotes the cardinality of \({{\mathcal {B}}}\). We then deduceFootnote 9 that for any \(v\in {{\mathcal {U}}}^{{\mathcal {P}}}\)

$$\begin{aligned} \Vert \mathbf {D}_v\Vert _{{\mathbb {R}}^{{\mathcal {P}}}\rightarrow {\mathbb {R}}^{{{\mathcal {P}}}\times {{\mathcal {B}}}}} \le \sqrt{2} \sqrt{|{{\mathcal {B}}}| +1}. \end{aligned}$$
(65)

Finally, it is standard that (32) is a consequence of the fact that \(l''=\frac{\sqrt{2} \sqrt{|{{\mathcal {B}}}| +1}}{\mu }\) is a Lipschitz bound for \(u\longmapsto \nabla _u TV(v,u)\).

1.3 Proof of Proposition 2

Considering \(v\in {{\mathcal {U}}}^{{\mathcal {P}}}, u \in {\mathbb {R}}^{{\mathcal {P}}}\) and a small variation \(h\in {\mathbb {R}}^{{{\mathcal {P}}}\times {{\mathcal {B}}}}\), we denote \({{\mathcal {P}}}_1= \{p\in {{\mathcal {P}}}| (\mathbf {A}_uv)_p \ge \frac{\mu }{2} \}\) and \({{\mathcal {P}}}_2 = {{\mathcal {P}}}\setminus {{\mathcal {P}}}_1\). For h small enough, we have

$$\begin{aligned} TV(v+h,u)= & {} \sum _{p\in {{\mathcal {P}}}_1} \varPsi _\mu \left( \sqrt{(\mathbf {A}_uv)_p + (\mathbf {A}_uh)_p} \right) \nonumber \\&+\sum _{p\in {{\mathcal {P}}}_2} \frac{ (\mathbf {A}_uv)_p + (\mathbf {A}_uh)_p }{ 2\mu }. \end{aligned}$$
(66)

Moreover,

$$\begin{aligned} \begin{aligned}&\sum _{p\in {{\mathcal {P}}}_1} \varPsi _\mu \left( \sqrt{(\mathbf {A}_uv)_p + (\mathbf {A}_uh)_p} \right) \\&\quad = \sum _{p\in {{\mathcal {P}}}_1} \varPsi _\mu \left( \sqrt{(\mathbf {A}_uv)_p}+ \frac{(\mathbf {A}_uh)_p}{2\sqrt{(\mathbf {A}_uv)_p}} +o\left( |(\mathbf {A}_uh)_p|\right) \right) \\&\quad = \sum _{p\in {{\mathcal {P}}}_1} \varPsi _\mu \left( \sqrt{(\mathbf {A}_uv)_p}\right) \\&\qquad + \varPsi '_\mu \left( \sqrt{(\mathbf {A}_uv)_p} \right) \frac{(\mathbf {A}_uh)_p}{2\sqrt{(\mathbf {A}_uv)_p}} +o\left( |(\mathbf {A}_uh)_p|\right) \\ \end{aligned} \end{aligned}$$
(67)

Denoting for all \(p\in {{\mathcal {P}}}_1\)

$$\begin{aligned} (u^*(v))_p = \frac{\varPsi '_\mu \left( \sqrt{(\mathbf {A}_uv)_p} \right) }{2 \sqrt{(\mathbf {A}_uv)_p}} \end{aligned}$$
(68)

and for all \(p\in {{\mathcal {P}}}_2\)

$$\begin{aligned} (u^*(v))_p = \frac{1}{2 \mu } \end{aligned}$$
(69)

and using the simple closed-form expression for the derivative \(\varPsi '_\mu \), we get for all \(p\in {{\mathcal {P}}}\)

$$\begin{aligned} (u^*(v))_p = \left\{ \begin{array}{ll} \frac{1}{2 \sqrt{(\mathbf {A}_uv)_p}}, &{} \text{ if } \sqrt{(\mathbf {A}_uv)_p} \ge \mu ,\\ \frac{1}{2\mu },&{} \text{ if } \mu \ge \sqrt{(\mathbf {A}_uv)_p}\ge 0. \end{array}\right. \end{aligned}$$
(70)

Using this notation in the previous calculations we obtain that

$$\begin{aligned} TV(v+h,u) = TV(v,u) +\left\langle u^*(v), \mathbf {A}_uh\right\rangle + o(\Vert h\Vert ). \end{aligned}$$
(71)

We finally conclude that

$$\begin{aligned} \nabla _v TV(v,u) = \mathbf {A}_u^* u^*(v). \end{aligned}$$
(72)

This proves the first part of Proposition 2.

Let us now show that \(v\longmapsto TV(v,u)\) is concave over \({\mathbb {R}}_+^{{{\mathcal {P}}}\times {{\mathcal {B}}}}\). In order to do so, we rewrite the latter formula under the form \((u^*(v))_p = \varphi ((\mathbf {A}_uv)_p)\) where the function \(\varphi \) is defined for all \(t\ge 0\) by

$$\begin{aligned} \varphi (t) = \left\{ \begin{array}{ll} \frac{1}{2\sqrt{t}}, &{} \text{ if } \sqrt{t} \ge \mu , \\ \frac{1}{2\mu },&{} \text{ if } \mu \ge \sqrt{t}\ge 0. \end{array}\right. \end{aligned}$$
(73)

Notice that function \(\varphi \) is non-increasing and therefore

$$\begin{aligned} (\varphi (t_1) - \varphi (t_2) ) (t_1-t_2) \le 0,\ \forall (t_1,t_2)\in {\mathbb {R}}^2. \end{aligned}$$
(74)

We now consider v and \(v'\in {\mathbb {R}}_+^{{{\mathcal {P}}}\times {{\mathcal {B}}}}\) and \(u\in {\mathbb {R}}^{{\mathcal {P}}}\). Using Taylor’s theorem, we know there exists \(t\in [0,1]\) such that \(v''=tv'+(1-t)v\) satisfies

$$\begin{aligned} \begin{aligned}&TV(v',u)- TV(v,u)-\left\langle \nabla _vTV(v,u), v'-v\right\rangle \\&\quad = \left\langle \nabla _vTV(v'',u)-\nabla _vTV(v,u), v'-v\right\rangle \\&\quad = \left\langle u^*(v'')-u^*(v), \mathbf {A}_u(v'-v)\right\rangle \\&\quad = \sum _{p\in {{\mathcal {P}}}} \left( \varphi (\mathbf {A}_uv''_p) - \varphi (\mathbf {A}_uv_p) \right) \left( \mathbf {A}_uv'_p - \mathbf {A}_uv_p \right) . \end{aligned} \end{aligned}$$
(75)

However, for any \(p\in {{\mathcal {P}}}, \mathbf {A}_uv''_p - \mathbf {A}_uv_p = t (\mathbf {A}_uv'_p- \mathbf {A}_uv_p) \) and \(\mathbf {A}_uv''_p - \mathbf {A}_uv_p\) and \(\mathbf {A}_uv'_p- \mathbf {A}_uv_p\) have the same sign. Using (74), we then get

$$\begin{aligned} \left( \varphi (\mathbf {A}_uv''_p) - \varphi (\mathbf {A}_uv_p) \right) \left( \mathbf {A}_uv'_p - \mathbf {A}_uv_p \right) \le 0 \end{aligned}$$
(76)

and finally

$$\begin{aligned} TV(v',u)- TV(v,u)-\left\langle \nabla _vTV(v,u), v'-v\right\rangle \le 0. \end{aligned}$$
(77)

This concludes the proof.

1.4 Proof of Proposition 3

For any \(v\in {{{\mathcal {U}}}^{{\mathcal {P}}}}\), given the expression

$$\begin{aligned} R(v) = \gamma ~\Vert Bv\Vert ^2, \end{aligned}$$
(78)

we immediately have

$$\begin{aligned} \nabla R (v) = 2 \gamma B^*B v. \end{aligned}$$
(79)

We only need to calculate the Lipschitz constant \(l'\) provided in Proposition 3. In order to do so, we consider v and \(v'\in {{{\mathcal {U}}}^{{\mathcal {P}}}}\) and denote \(w=v'-v\). We have

$$\begin{aligned} \Vert \nabla R(v') - \nabla R(v)\Vert ^2 = 4\gamma ^2 \Vert B^*Bw\Vert ^2. \end{aligned}$$
(80)

Moreover, using the formula for \(B^*\), we get

$$\begin{aligned}&\Vert B^*Bw\Vert ^2 \nonumber \\&\,\, =\sum _{(p,q)\in {{{\mathcal {P}}}\times {{\mathcal {B}}}}} \left| \sum _{p'\in {{\mathcal {N}}}} ((Bw)_{p,q,p'} - (Bw)_{p-p',q,p'})\right| ^2. \end{aligned}$$
(81)

The term inside the absolute value can be rewritten, using the definition of B, under the form

$$\begin{aligned} \begin{aligned}&\sum _{p'\in {{\mathcal {N}}}} ((Bw)_{p,q,p'} - (Bw)_{p-p',q,p'}) \\&\quad = \sum _{p'\in {{\mathcal {N}}}} (2w_{p,q} - w_{p+p',q}- w_{p-p',q}),\\&\quad = 2|{{\mathcal {N}}}| w_{p,q} - \sum _{p'\in {{\mathcal {N}}}}w_{p+p',q}- \sum _{p'\in {{\mathcal {N}}}}w_{p-p',q}. \end{aligned} \end{aligned}$$
(82)

Therefore,

$$\begin{aligned} \begin{aligned}&\Vert B^*Bw\Vert ^2 \\&\quad \le \sum _{(p,q)\in {{{\mathcal {P}}}\times {{\mathcal {B}}}}}3\left( 4|{{\mathcal {N}}}|^{2}w_{p,q}^{2}+\left( \sum _{p'\in {{\mathcal {N}}}}w_{p+p',q}\right) ^{2}\right. \\&\qquad \left. +\left( \sum _{p'\in {{\mathcal {N}}}}w_{p-p',q}\right) ^{2}\right) \\&\quad \le 3\left( 4|{{\mathcal {N}}}|^{2}\Vert w\Vert ^{2}+|{{\mathcal {N}}}|\sum _{(p,q)\in {{{\mathcal {P}}}\times {{\mathcal {B}}}}}\sum _{p'\in {{\mathcal {N}}}}w_{p+p',q}^{2}\right. \\&\qquad \left. +\,\,\,|{{\mathcal {N}}}|\sum _{(p,q)\in {{{\mathcal {P}}}\times {{\mathcal {B}}}}}\sum _{p'\in {{\mathcal {N}}}}w_{p-p',q}^{2}\right) \\&\quad \le 3\times 6 |{{\mathcal {N}}}|^2\Vert w\Vert ^2. \end{aligned} \end{aligned}$$
(83)

Finally,

$$\begin{aligned} \Vert \nabla R(v') - \nabla R(v)\Vert ^2 \le 2\times 6^2 \gamma ^2 |{{\mathcal {N}}}|^2\Vert v'-v\Vert ^2. \end{aligned}$$
(84)

We then conclude that \(v\longmapsto \nabla R(v)\) is Lipschitz with Lipschitz constant \(6\sqrt{2} \gamma |{{\mathcal {N}}}|\). This concludes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Malgouyres, F. & Zeng, T. Regularized Non-local Total Variation and Application in Image Restoration. J Math Imaging Vis 59, 296–317 (2017). https://doi.org/10.1007/s10851-017-0732-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-017-0732-6

Keywords

Mathematics Subject Classification

Navigation