Skip to main content
Log in

Speckle Reduction with Trained Nonlinear Diffusion Filtering

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Speckle reduction is a prerequisite for many image processing tasks in synthetic aperture radar images, as well as all coherent images. In recent years, predominant state-of-the-art approaches for despeckling are usually based on nonlocal methods which mainly concentrate on achieving utmost image restoration quality, with relatively low computational efficiency. Therefore, in this study we aim to propose an efficient despeckling model with both high computational efficiency and high recovery quality. To this end, we exploit a newly developed trainable nonlinear reaction diffusion (TNRD) framework which has proven a simple and effective model for various image restoration problems. In the original TNRD applications, the diffusion network is usually derived based on the direct gradient descent scheme. However, this approach will encounter some problem for the task of multiplicative noise reduction exploited in this study. To solve this problem, we employed a new architecture derived from the proximal gradient descent method. Taking into account the speckle noise statistics, the diffusion process for the despeckling task is derived. We then retrain all the model parameters in the presence of speckle noise. Finally, optimized nonlinear diffusion filtering models are obtained, which are specialized for despeckling with various noise levels. Experimental results substantiate that the trained filtering models provide comparable or even better results than state-of-the-art nonlocal approaches. Meanwhile, our proposed model merely contains convolution of linear filters with an image, which offers high-level parallelism on GPUs. As a consequence, for images of size \(512 \times 512\), our GPU implementation takes less than 0.1 s to produce state-of-the-art despeckling performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Achim, A., Kuruoğlu, E.E., Zerubia, J.: SAR image filtering based on the heavy-tailed rayleigh model. IEEE Trans. Image Process. 15(9), 2686–2693 (2006)

    Article  Google Scholar 

  2. Achim, A., Tsakalides, P., Bezerianos, A.: SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modeling. IEEE Trans. Geosci. Remote Sens. 41(8), 1773–1784 (2003)

    Article  Google Scholar 

  3. Aja-Fernández, S., Alberola-López, C.: On the estimation of the coefficient of variation for anisotropic diffusion speckle filtering. IEEE Trans. Image Process. 15(9), 2694–2701 (2006)

    Article  Google Scholar 

  4. Alparone, L., Baronti, S., Garzelli, A., Nencini, F.: Landsat ETM+ and SAR image fusion based on generalized intensity modulation. IEEE Trans. Geosci. Remote Sens. 42(12), 2832–2839 (2004)

    Article  Google Scholar 

  5. Argenti, F., Bianchi, T., Lapini, A., Alparone, L.: Fast map despeckling based on Laplacian–Gaussian modeling of wavelet coefficients. IEEE Geosci. Remote Sens. Lett. 9(1), 13–17 (2012)

    Article  Google Scholar 

  6. Argenti, F., Lapini, A., Bianchi, T., Alparone, L.: A tutorial on speckle reduction in synthetic aperture radar images. IEEE Geosci. Remote Sens. Mag. 1(3), 6–35 (2013)

    Article  Google Scholar 

  7. Aubert, G., Aujol, J.-F.: A variational approach to removing multiplicative noise. SIAM J. Appl. Math. 68(4), 925–946 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bianchi, T., Argenti, F., Alparone, L.: Segmentation-based map despeckling of SAR images in the undecimated wavelet domain. IEEE Trans. Geosci. Remote Sens. 46(9), 2728–2742 (2008)

    Article  Google Scholar 

  9. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Buades, A., Coll, B., Morel, J.-M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, L., Liu, X., Wang, X., Zhu, P.: Multiplicative noise removal via nonlocal similarity-based sparse representation. J. Math. Imaging Vis. 54(2), 199–215 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, Y., Feng, W., Ranftl, R., Qiao, H., Pock, T.: A higher-order MRF based variational model for multiplicative noise reduction. IEEE Signal Process. Lett. 21(11), 1370–1374 (2014)

    Article  Google Scholar 

  13. Chen, Y., Pock, T.: Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration. IEEE TPAMI (2016). http://ieeexplore.ieee.org/document/7527621/

  14. Chen, Y., Yu, W., Pock, T.: On learning optimized reaction diffusion processes for effective image restoration. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

  15. Cozzolino, D., Parrilli, S., Scarpa, G., Poggi, G., Verdoliva, L.: Fast adaptive nonlocal SAR despeckling. IEEE Geosci. Remote Sens. Lett. 11(2), 524–528 (2014)

    Article  Google Scholar 

  16. Csiszár, I.: Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems. Ann. Stat. 19(4), 2032–2066 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  18. Deledalle, C.-A., Denis, L., Tupin, F.: Iterative weighted maximum likelihood denoising with probabilistic patch-based weights. IEEE Trans. Image Process. 18(12), 2661–2672 (2009)

    Article  MathSciNet  Google Scholar 

  19. Deledalle, C.-A., Denis, L., Tupin, F.: How to compare noisy patches? Patch similarity beyond Gaussian noise. Int. J. Comput. Vis. 99(1), 86–102 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Di Martino, G., Poderico, M., Poggi, G., Riccio, D., Verdoliva, L.: Benchmarking framework for SAR despeckling. IEEE Trans. Geosci. Remote Sens. 52(3), 1596–1615 (2014)

    Article  Google Scholar 

  21. Dong, Y., Zeng, T.: A convex variational model for restoring blurred images with multiplicative. SIAM J. Imaging Sci. 6(3), 1598–1625 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Durand, S., Fadili, J., Nikolova, M.: Multiplicative noise removal using l1 fidelity on frame coefficients. J. Math. Imaging Vis. 36(3), 201–226 (2010)

    Article  Google Scholar 

  23. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  24. Escande, P., Weiss, P., Zhang, W.: A variational model for multiplicative structured noise removal. J. Math. Imaging Vis. (2016). doi:10.1007/s10851-016-0667-3

  25. Feng, W., Lei, H., Gao, Y.: Speckle reduction via higher order total variation approach. IEEE Trans. Image Process. 23(4), 1831–1843 (2014)

    Article  MathSciNet  Google Scholar 

  26. Frost, V., Shanmugan, K., Holtzman, J.: A model for radar images and its applications to adaptive digital filtering of multiplicative noise. IEEE Trans. Pattern Anal. Mach. Intell. 4(2), 157–166 (1982)

    Article  Google Scholar 

  27. Goodman, J.W.: Statistical properties of laser speckle patterns. In: Laser Speckle and Related Phenomena, pp. 9–75. Springer, Berlin Heidelberg (1975). http://link.springer.com/chapter/10.1007%2F978-3-662-43205-1_23

  28. Huang, Y.-M., Lu, D.-Y., Zeng, T.: Two-step approach for the restoration of images corrupted by multiplicative noise. SIAM J. Sci. Comput. 35(6), A2856–A2873 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Huang, Y.-M., Moisan, L., Ng, M.K., Zeng, T.: Multiplicative noise removal via a learned dictionary. IEEE Trans. Image Process. 21(11), 4534–4543 (2012)

    Article  MathSciNet  Google Scholar 

  30. Jin, Z., Yang, X.: A variational model to remove the multiplicative noise in ultrasound images. J. Math. Imaging Vis. 39(1), 62–74 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kuan, D.T., Sawchuk, A., Strand, T.C., Chavel, P.: Adaptive restoration of images with speckle. IEEE Trans. Acoust. Speech Signal Process. 35(3), 373–383 (1987)

    Article  Google Scholar 

  32. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  33. Lee, J.-S.: Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. Pattern Anal. Mach. Intell. 2, 165–168 (1980)

    Article  Google Scholar 

  34. Lee, J.-S.: Refined filtering of image noise using local statistics. Comput. Graph. Image Process. 15(4), 380–389 (1981)

    Article  Google Scholar 

  35. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45(1), 503–528 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lopes, A., Nezry, E., Touzi, R., Laur, H.: Maximum a posteriori speckle filtering and first order texture models in SAR images. In: Geoscience and Remote Sensing Symposium, 1990, pp. 2409–2412 (1990)

  37. Lopes, A., Nezry, E., Touzi, R., Laur, H.: Structure detection and statistical adaptive speckle filtering in SAR images. Int. J. Remote Sens. 14(9), 1735–1758 (1993)

    Article  Google Scholar 

  38. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of 8th International Conference on Computer Vision (2001)

  39. Nesterov, Y.: Introductory Lectures on Convex Optimization, volume 87 of Applied Optimization. Kluwer Academic Publishers, Boston (2004). A basic course

  40. Ochs, P., Chen, Y., Brox, T., Pock, T.: iPiano: inertial proximal algorithm for nonconvex optimization. SIAM J. Imaging Sci. 7(2), 1388–1419 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Oliver, C., Quegan, S.: Understanding Synthetic Aperture Radar Images. SciTech Publishing, Rayleigh (2004)

    Google Scholar 

  42. Parrilli, S., Poderico, M., Angelino, C.V., Verdoliva, L.: A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage. IEEE Trans. Geosc. Remote Sens. 50(2), 606–616 (2012)

    Article  Google Scholar 

  43. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  44. Ranjani, J., Thiruvengadam, S.J.: Dual-tree complex wavelet transform based SAR despeckling using interscale dependence. IEEE Trans. Geosci. Remote Sens. 48(6), 2723–2731 (2010)

    Article  Google Scholar 

  45. Ranjani, J.J., Thiruvengadam, S.: Generalized SAR despeckling based on dtcwt exploiting interscale and intrascale dependences. IEEE Geosci. Remote Sens. Lett. 8(3), 552–556 (2011)

    Article  Google Scholar 

  46. Roth, S., Black, M.J.: Fields of experts. Int. J. Comput. Vis. 82(2), 205–229 (2009)

    Article  Google Scholar 

  47. Sattar, F., Floreby, L., Salomonsson, G., Lovstrom, B.: Image enhancement based on a nonlinear multiscale method. IEEE Trans. Image Process. 6(6), 888–895 (1997)

    Article  Google Scholar 

  48. Steidl, G., Teuber, T.: Removing multiplicative noise by Douglas–Rachford splitting methods. J. Math. Imaging Vis. 36(2), 168–184 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Teuber, T., Lang, A.: A new similarity measure for nonlocal filtering in the presence of multiplicative noise. Comput. Stat. Data Anal. 56(12), 3821–3842 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. Teuber, T., Lang, A.: Nonlocal filters for removing multiplicative noise. Scale Space Var. Methods Comput. Vis. 6667, 50–61 (2012)

    Article  MATH  Google Scholar 

  51. Touzi, R.: A review of speckle filtering in the context of estimation theory. IEEE Trans. Geosci. Remote Sens. 40(11), 2392–2404 (2002)

    Article  MathSciNet  Google Scholar 

  52. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  53. Yu, Y., Acton, S.T.: Speckle reducing anisotropic diffusion. IEEE Trans. Image Process. 11(11), 1260–1270 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunjin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, W., Chen, Y. Speckle Reduction with Trained Nonlinear Diffusion Filtering. J Math Imaging Vis 58, 162–178 (2017). https://doi.org/10.1007/s10851-016-0697-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-016-0697-x

Keywords

Navigation