Journal of Mathematical Imaging and Vision

, Volume 58, Issue 1, pp 130–146 | Cite as

Median Filtering: A New Insight

  • Sebastián A. Villar
  • Sebastián Torcida
  • Gerardo G. Acosta
Article

Abstract

Median filtering (MF) is a canonical image processing operation truly useful in many practical applications. The MF most appealing feature is its resistance to noise and errors in data, but because the method requires window values to be sorted it is computationally expensive. In this work, a new insight into MF capabilities based on the optimal breakdown value (BV) of the median is offered, and it is also shown that the BV-based versions of two of the most popular MF algorithms outperform their corresponding standard versions. A general framework for both the theoretical analysis and comparison of MF algorithms is presented in the process, which will hopefully contribute to a better understanding of the MF many subtle features. The introduced ideas are experimentally tested by using real and synthetic images.

Keywords

Image processing Median filter Complexity theory Comparison and evaluation of algorithms Breakdown value 

References

  1. 1.
    Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms. McGraw-Hill, New York (2001)MATHGoogle Scholar
  2. 2.
    Skiena, S.S.: The Algorithm Design Manual. Springer, London (2008)CrossRefMATHGoogle Scholar
  3. 3.
    Tukey, J.: Exploratory Data Analysis. Addison-Wesley, Menlo Park (1977)MATHGoogle Scholar
  4. 4.
    Maragos, P., Schafer, R.: Morphological filters—part II: their relations to median, order-statistic, and stack filters. IEEE Trans. Acoust. Speech Signal Process. 35, 1170–1184 (1987)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Pratt, W.K.: Digital Image Processing: PIKS Inside. Wiley, New York (2001)CrossRefMATHGoogle Scholar
  6. 6.
    Eng, How-Lung, Ma, Kai-Kuang: Noise adaptive soft-switching median filter. IEEE Trans. Image Process. 10, 242–251 (2001)CrossRefMATHGoogle Scholar
  7. 7.
    Nelson, T.R., Pretorius, D.H.: Three-dimensional ultrasound of fetal surface features. Ultrasound Obstet. Gynecol. 2, 166–174 (1992)CrossRefGoogle Scholar
  8. 8.
    Carayon, P., Portier, M., Dussossoy, D., Bord, A., Petitpretre, G., Canat, X., Le Fur, G., Casellas, P.: Involvement of peripheral benzodiazepine receptors in the protection of hematopoietic cells against oxygen radical damage. Blood 87, 3170–3178 (1996)Google Scholar
  9. 9.
    LeBas, T.P., Mason, D.C., Millard, N.C.: TOBI image processing: the state of the art. J. Ocean. Eng. 20, 85–93 (1995)CrossRefGoogle Scholar
  10. 10.
    Villar, S.A., Torcida, S., Acosta, G.G.: Un Enfoque Novedoso del Filtro de Mediana para el Suavizado de Señales Acústicas de Sonar de Barrido Lateral. Presented at the ARGENCON 2014, San Carlos de Bariloche-Neuquen-Argentina June 11 (2014)Google Scholar
  11. 11.
    Chen, Zhao-Yan, Wang, Tong, Ma, Nan: Accurate baseline estimation for synthetic aperture radar-ground moving target indication systems based on co-registration and median filtering. Radar Sonar Navig. IET. 8, 607–615 (2014)CrossRefGoogle Scholar
  12. 12.
    Juhola, M., Katajainen, J., aRaita, T.: Comparison of algorithms for standard median filtering. IEEE Trans. Signal Process. 39, 204–208 (1991)CrossRefGoogle Scholar
  13. 13.
    Langsam, Y., Augenstein, J., Tenenbaum, A.: Data Structures Using C and C++. Prentice Hall, Englewood Cliffs (1995)MATHGoogle Scholar
  14. 14.
    Corwin, E., Logar, A.: Sorting in linear time-variations on the bucket sort. J. Comput. Sci. Coll. 20, 197–202 (2004)Google Scholar
  15. 15.
    Thomas, C.H., Charles, L.E., Ronald, R.L., Clifford, S.: Introduction to Algorithms. MIT Press and McGraw-Hill, Cambridge (2001)MATHGoogle Scholar
  16. 16.
    Tibshirani, R.J.: Fast Computation of the Median by Successive Binning (2008). ArXiv Prepr. arXiv:0806.3301
  17. 17.
    Suomela, J.: Median Filtering is Equivalent to Sorting (2014). ArXiv Prepr. arXiv:1406.1717
  18. 18.
    Huang, T., Yang, G., Tang, G.: A fast two-dimensional median filtering algorithm. IEEE Trans. Acoust. Speech Signal Process. 27, 13–18 (1979)CrossRefGoogle Scholar
  19. 19.
    Weiss, B.: Fast median and bilateral filtering. ACM Trans. Graph. 25, 519–526 (2006)CrossRefGoogle Scholar
  20. 20.
    Gil, J., Werman, M.: Computing 2-D min, median, and maxfilters. IEEE Trans. Pattern Anal. Mach. Intell. 15, 504–507 (1993)CrossRefGoogle Scholar
  21. 21.
    Perreault, S., Hebert, P.: Median filtering in constant time. IEEE Trans. Image Process. 16, 2389–2394 (2007)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Urbach, E.R., Wilkinson, M.H.F.: Efficient 2-D grayscale morphological transformations with arbitrary flat structuring elements. IEEE Trans. Image Process. 17, 1–8 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Alekseychuk, A.: Hierarchical recursive running median. In: 19th IEEE International Conference on Image Processing (ICIP 2012), Lake Buena Vista, Orlando, FL, USA, September 30– October 3, 2012, pp. 109–112 (2012)Google Scholar
  24. 24.
    Huber, P.J.: Robust Statistics. Wiley, New York (1981)CrossRefMATHGoogle Scholar
  25. 25.
    Kluge, W.: Abstract Computing Machines: A Lambda Calculus Perspective. Springer, Berlin (2005)MATHGoogle Scholar
  26. 26.
    Diehl, S., Hartel, P., Sestoft, P.: Abstract machines for programming language implementation. Future Gener. Comput. Syst. 16, 739–751 (2000)CrossRefMATHGoogle Scholar
  27. 27.
    Jaime, F.J., Hormigo, J., Villalba, J., Zapata, E.L.: New SIMD instructions set for image processing applications enhancement. In: 15th IEEE International Conference on Image Processing, 2008 (ICIP 2008), pp. 1396–1399 (2008)Google Scholar
  28. 28.
    Alparone, L., Cappellini, V., Garzelli, A.: A coarse-to-fine algorithm for fast median filtering of image data with a huge number of levels. Signal Process. 39, 33–41 (1994)CrossRefMATHGoogle Scholar
  29. 29.
    Acosta, G.G., Villar, S.A.: Accumulated CA-CFAR process in 2-D for online object detection from sidescan sonar data. IEEE J. Ocean. Eng. 40, 558–569 (2015)CrossRefGoogle Scholar
  30. 30.
    Villar, S.A., Acosta, G.G., Sousa, A.L., Rozenfeld, A.: Evaluation of an efficient approach for target tracking from acoustic imagery for the perception system of an autonomous underwater vehicle. J. Adv. Robot. Syst. InTech. 11, 1–13 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Sebastián A. Villar
    • 1
  • Sebastián Torcida
    • 2
  • Gerardo G. Acosta
    • 1
    • 3
  1. 1.INTELYMEC (UNCPBA) and CIFICEN (UNCPBA-CICPBA-CONICET)OlavarríaArgentina
  2. 2.Departamento de Matemática, Facultad de Ciencias Exactas (Campus)UNCPBATandilArgentina
  3. 3.Grupd’ Enginyeria Electrònica (GEE), Departament de FísicaUniversitat de les Illes BalearsPalmaSpain

Personalised recommendations