A Statistical Framework for Generalized Linear Image Processing Systems

  • Guang Deng


Generalized linear image processing systems have been developed from physical image formation models, human visual perception models, and mathematical models. Although there have been many papers on the extension, parameterization, and symmetrization of some of these systems, what is lacking is a unified framework such that the development and study of such systems can be performed based on a common ground. In this paper, we propose a conceptual image sensor which models how the light energy is converted into the sensor data. In the proposed sensor model, the input energy is regarded as a random variable and the conversion is through the cumulative distribution function. Based on the sensor model, we suggest a statistical framework by which new systems can be derived, and existing and seemingly unrelated systems can be studied from a unified perspective. The proposed statistical framework not only provides a principled way to symmetrizing systems through the even extension of the probability distribution function (PDF) and a natural way for the parameterization of systems through parameters of PDF. In this paper, we demonstrate new applications of the statistical framework through a numerical approximation of the lower incomplete gamma function, through the enhancement of the dynamic range and manipulation of the sharpness of images by using the scalar multiplication operation of the parametric system, through an application of a new system in fusion of multi-exposure images, and through an application of the three new systems for the correction of incorrect exposure.


Vector space Generalized linear image processing Image sensor model Human visual system 


  1. 1.
    Oppenheim, A.V., Schafer, R.W., Stockham Jr., T.G.: Nonlinear filtering of multiplied and convolved signals. IEEE Trans. Audio Electroacoust. 16(3), 437–466 (1968)CrossRefGoogle Scholar
  2. 2.
    Stockham Jr., T.G.: Image processing in the context of a visual model. Proc. IEEE 60(7), 828–842 (1972)CrossRefGoogle Scholar
  3. 3.
    Oppenheim, A.V., Schafer, R.: Digital Signal Processing. Prentice-Hall, Upper Saddle River (1975)MATHGoogle Scholar
  4. 4.
    Granrath, D.J.: The role of human visual models in image processing. Proc. IEEE 69(5), 828–842 (1981)CrossRefGoogle Scholar
  5. 5.
    Pitas, I., Venetsanopoulos, A.: Nonlinear mean filters in image processing. IEEE Trans. Acoust. Speech Signal Process. 34(3), 573–584 (1986)CrossRefGoogle Scholar
  6. 6.
    Shvaytser, H., Peleg, S.: Inversion of picture operators. Pattern Recognit. Lett. 5(1), 49–61 (1987)CrossRefGoogle Scholar
  7. 7.
    Jourlin, M., Pinoli, J.-C.: A model for logarithmic image processing. J. Microsc. 149, 21–35 (1988)CrossRefGoogle Scholar
  8. 8.
    Jourlin, M., Pinoli, J.-C.: Image dynamic range enhancement and stabilization in the context of the logarithmic image processing model. Signal Process. 41, 225–237 (1995)CrossRefMATHGoogle Scholar
  9. 9.
    Pinoli, J.-C.: A general comparative study of the multiplicative homomorphic, log-ratio and logarithmic image processing approaches. Signal Process. 58(1), 11–45 (1997)CrossRefMATHGoogle Scholar
  10. 10.
    Deng, G., Pinoli, J.-C.: Differentiation-based edge detection using the logarithmic image processing model. J. Math. Imaging Vis. 8(2), 161–180 (1998)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Courbebaisse, G., Trunde, F., Jourlin, M.: Wavelet transform and lip model. Image Anal. Stereol. 21, 121–125 (2002)CrossRefGoogle Scholar
  12. 12.
    Lievin, M., Luthon, F.: Nonlinear color space and spatiotemporal mrf for hierarchical segmentation of face features in video. IEEE Trans. Image Process. 13(1), 63–71 (2004)CrossRefGoogle Scholar
  13. 13.
    Palomares, J.M., Gonzalez, J., Vidal, E.R., Prieto, A.: General logarithmic image processing convolution. IEEE Trans. Image Process. 15(11), 3602–3608 (2006)CrossRefGoogle Scholar
  14. 14.
    Pinoli, J.-.C, Debayle, J.: Logarithmic adaptive neighborhood image processing (LANIP): introduction, connections to human brightness perception, and application issues. EURASIP J. Adv. Signal Process. 2007, 22, Article ID 36 105. doi: 10.1155/2007/36105 (2007)
  15. 15.
    Panetta, K., Wharton, E., Agaian, S.: Human visual system-based image enhancement and logarithmic contrast measure. IEEE Trans. Syst. Man Cybern. B 38(1), 174–188 (2008)CrossRefGoogle Scholar
  16. 16.
    Panetta, K., Wharton, E.J., Agaian, S.S.: Logarithmic edge detection with applications. J. Comput. 3, 11–19 (2008)CrossRefGoogle Scholar
  17. 17.
    Gouinaud, H., Gavet, Y., Debayle, J., Pinoli, J.-C.: Color correction in the framework of color logarithmic image processing. In: Proceedings of 7tn International Symposium on Image and Signal Processing and Analysis, pp. 129–133 (2011)Google Scholar
  18. 18.
    Jourlin, M., Breugnot, J., Itthirad, F., Bouabdellah, M., Close, B.: Logarithmic image processing for color images. In: Hawkes, P.W. (ed.) Advances in Imaging and Electron Physics, pp. 65–107. Elsevier, Amsterdam (2011)Google Scholar
  19. 19.
    Pinoli, J.C., Debayle, J.: Adaptive generalized metrics, distance maps and nearest neighbor transforms on gray tone images. Pattern Recognit. 45(7), 2758–2768 (2012)CrossRefMATHGoogle Scholar
  20. 20.
    Jourlin, M., Couka, E., Abdallah, B., Corvo, J., Breugnot, J.: Asplünd’s metric defined in the logarithmic image processing (LIP) framework: a new way to perform double-sided image probing for non-linear grayscale pattern matching. Pattern Recognit. 47(9), 2908–2924 (2014)CrossRefGoogle Scholar
  21. 21.
    Carre, M., Jourlin, M.: LIP operators: simulating exposure variations to perform algorithms independent of lighting conditions. In: Proceedings of International Conference on Multimedia Computing and Systems (ICMCS), pp. 122–126 (2014)Google Scholar
  22. 22.
    Deshayes, V., Guilbert, P., Jourlin, M.: How simulating exposure time variations in the lip model. application: moving objects acquisition. In: Proceedings of the 14th International Congress for Stereology and Image Analysis. (2015)
  23. 23.
    Pinoli, J.-C.: The logarithmic image processing model: connections with human brightness perception and contrast estimators. J. Math. Imaging Vis. 7(4), 341–358 (1997)CrossRefGoogle Scholar
  24. 24.
    Deng, G.: An entropy interpretation of the logarithmic image processing model with application to contrast enhancement. IEEE Trans. Image Process. 18(5), 1135–1140 (2009)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Sbaiz, L., Feng, Y., Charbon, E., Susstrunk, S., Vetterli, M.: The gigavision camera. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1093–1096 (2009)Google Scholar
  26. 26.
    Deng, G.: A generalized logarithmic image processing model based on the giga-vision sensor model. IEEE Trans. Image Process. 3, 1406–1414 (2012)CrossRefGoogle Scholar
  27. 27.
    Nercessian, S.C., Panetta, K., Agaian, S.S.: Multiresolution decomposition schemes using the parameterized logarithmic image processing model with application to image fusion. EURASIP J. Adv. Signal Process. vol. 2011, p. Article ID 515084. doi: 10.1155/2011/515084 (2011)
  28. 28.
    Panetta, K., Agaian, S., Zhou, Y., Wharton, E.: Parameterized logarithmic framework for image enhancement. IEEE Trans. Syst. Man Cybern. B 41(2), 460–473 (2011)CrossRefGoogle Scholar
  29. 29.
    Florea, C., Florea, L.: Parametric logarithmic type image processing for contrast based auto-focus in extreme lighting conditions. Int. J. Appl. Math. Comput. Sci. 23(3), 637–648 (2013)CrossRefMATHGoogle Scholar
  30. 30.
    Patrascu, V.: Fuzzy enhancement method using logarithmic models. In: IEEE International Conference on Fuzzy Systems, pp. 1431–1436 (2004)Google Scholar
  31. 31.
    Vertan, C., Oprea, A., Florea, C., Florea, L.: A pseudo-logarithmic image processing framework for edge detection. In: Advanced Concepts for Intelligent Vision Systems, pp. 637–644. Springer (2008)Google Scholar
  32. 32.
    Navarro, L., Deng, G., Courbebaisse, G.: The symmetric logarithmic image processing model. Digit. Signal Process. 23(5), 1337–1343 (2013)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Deng, G.: A generalized unsharp masking algorithm. IEEE Trans. Image Process. 20(5), 1249–1261 (2011)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Deng, G.: Parametric generalized linear system based on the notion of the t-norm. IEEE Trans. Image Process. 22(7), 2903–2910 (2013)CrossRefGoogle Scholar
  35. 35.
    Vorobel, R.: Logarithmic type image processing algebras. In: Proceedings of 2010 International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves, pp. 1–3 (2010)Google Scholar
  36. 36.
    Naka, K.I., Rushton, W.A.: S-potentials from luminosity units in the retina of fish (Cyprinidae). J. Physiol. 185(3), 587–599 (1966)Google Scholar
  37. 37.
    Gale, J.G., Williams, T.P.: Compression of retinal responsivity: V-log I functions and increment thresholds. Vis. Res. 18, 587–590 (1978)CrossRefGoogle Scholar
  38. 38.
    Gale, J.G., Williams, T.P.: Light adaptation and temperature effects in rat PIII retinal response: analysis with a two-state model. Proc. Natl. Acad. Sci. 77(7), 4021–4025 (1980)CrossRefGoogle Scholar
  39. 39.
    Beaudot, W.: Adaptive spatiotemporal filtering by a neuromorphic model of the vertebrate retina. In: Proceedings of IEEE International Conference on Image Processing, vol. 1, pp. 427–430 (1996)Google Scholar
  40. 40.
    Pattanaik, S.N., Tumblin, J., Yee, H., Greenberg, D.P.: Time-dependent visual adaptation for fast realistic image display. In: Proceedings of 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 47–54 (2000)Google Scholar
  41. 41.
    Reinhard, E., Devlin, K.: Dynamic range reduction inspired by photoreceptor physiology. IEEE Trans. Vis. Comput. Graph. 11(1), 13–24 (2005)CrossRefGoogle Scholar
  42. 42.
    Meylan, L., Alleysson, D., Süsstrunk, S.: A model of retinal local adaptation for the tone mapping of color filter array images. J. Opt. Soc. Am. A 24(9), 2807–2816 (2007)CrossRefGoogle Scholar
  43. 43.
    Benoit, A., Alleysson, D., Herault, J., Le Callet, P.: Spatio-temporal tone mapping operator based on a retina model. In: Computational Color Imaging, ser. Lecture Notes in Computer Science, vol. 5646, pp. 12–22. Springer, Berlin (2009)Google Scholar
  44. 44.
    Ferradans, S., Bertalmío, M., Provenzi, E., Caselles, V.: An analysis of visual adaptation and contrast perception for tone mapping. IEEE Trans. Pattern Anal. Mach. Intell. 33, 2002–2012 (2011)CrossRefGoogle Scholar
  45. 45.
    Wang, Y., Luo, Y.: Balanced color contrast enhancement for digital images. Opt. Eng. 51(10), 10700-1–10700-24 (2012)Google Scholar
  46. 46.
    Gao, C., Panetta, K., Agaian, S.: A new color contrast enhancement algorithm for robotic applications. In: Proceedings of IEEE International Conference on Technologies for Practical Robot Applications, pp. 42–47 (2012)Google Scholar
  47. 47.
    Nundy, S., Purves, D.: A probabilistic explanation of brightness scaling. Proc. Natl. Acad. Sci. 99(22), 14 482–14 487 (2002)CrossRefGoogle Scholar
  48. 48.
    Fraleigh, J.B.: A First Course in Abstract Algebra. Addison-Wesley Publishing Company, Boston (1978)MATHGoogle Scholar
  49. 49.
    Dunford, N., Schwartz, J.T.: Linear Operators Part 1: General Theory. Interscience Publishers, Olney (1958)MATHGoogle Scholar
  50. 50.
    Kobayashi, Y., Kato, T.: A high fidelity contrast improving model based on human vision mechanisms. In: Proceedings of IEEE International Conference on Multimedia Computing and Systems, vol. 2, pp. 578–584 (1999)Google Scholar
  51. 51.
    Banerjee, A., Merugu, S., Dhillon, I., Ghosh, J.: Clustering with Bregman divergences. J. Mach. Learn. Res. 6, 1705–1749 (2005)Google Scholar
  52. 52.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)CrossRefMATHGoogle Scholar
  53. 53.
    Nielsen, F., Nock, R.: Sided and symmetrized Bregman centroids. IEEE Trans. Inf. Theory 55(6), 2882–2904 (2009)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Kleiber, C.: A guide to the dagum distributions. In: Chotikapanich D. (ed.) Modeling Income Distributions and Lorenz Curves, ser. Economic Studies in Equality, Social Exclusion and Well-Being, vol. 5, pp. 97–117. Springer, New York (2008)Google Scholar
  55. 55.
    Deng, G.: The symmetric generalized LIP model and its application in dynamic range enhancement. J. Math. Imaging Vis. 55(3), 253–265 (2016)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph. 27(3), 67:1–67:10 (2008)CrossRefGoogle Scholar
  57. 57.
    He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1397–1409 (2013)CrossRefGoogle Scholar
  58. 58.
    Gastal, E.S.L., Oliveira, M.M.: Domain transform for edge-aware image and video processing. ACM Trans. Graph. 30(4), 69:1–69:12 (2011)CrossRefGoogle Scholar
  59. 59.
    Mertens, T., Kautz, J., Reeth, F.V.: Exposure fusion. In: 15th Pacific Conference on Computer Graphics and Applications, pp. 382–390 (2007)Google Scholar
  60. 60.
    Peli, E.: Contrast in complex images. J. Opt. Soc. Am. A 7, 2032–2040 (1990)CrossRefGoogle Scholar
  61. 61.
    Hasler, D., Suesstrunk, S.E.: Measuring colorfulness in natural images. In: Rogowitz B.E., Pappas T.N. (eds.) Human Vision and Electronic Imaging VIII, ser. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 5007, pp. 87–95 (2003)Google Scholar
  62. 62.
    Liu, L.X., Liu, B., Huang, H., Bovik, A.: No-reference image quality assessment based on spatial and spectral entropies. Signal Process. Image Commun. 29, 856–863 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of EngineeringLa Trobe UniversityBundooraAustralia

Personalised recommendations