Advertisement

Journal of Mathematical Imaging and Vision

, Volume 54, Issue 1, pp 117–131 | Cite as

A Cahn–Hilliard System with a Fidelity Term for Color Image Inpainting

  • Laurence Cherfils
  • Hussein Fakih
  • Alain Miranville
Article

Abstract

In this paper, we propose a model for multi-color image inpainting composed of n colors. In particular, as in the binary model, i.e., the Bertozzi–Esedoglu–Gillette–Cahn–Hilliard equation (Bertozzi et al. in IEEE Trans Image Proc 16:285–291, 2007, Multiscale Model Simul 6:913–936, 2007), we add a fidelity term to the corresponding Cahn–Hilliard system. We are interested in the study of the asymptotic behavior, in terms of finite-dimensional attractors, of the dynamical system associated with the problem. The main difficulty here is that we no longer have the conservation of mass, i.e., of the spatial average of the order parameter c, as in the Cahn–Hilliard system. Instead, we prove that the spatial average of c is dissipative. We finally give numerical simulations which confirm and extend previous ones on the efficiency of the binary model.

Keywords

Cahn–Hilliard system Fidelity term Color image inpainting Well-posedness Exponential attractor Simulations 

Mathematics Subject Classification

35B40 35K55 68M07 80A23 

Notes

Acknowledgments

The authors wish to thank the referees for their careful reading of the article and useful comments.

References

  1. 1.
    Bates, P.W., Fife, P.C.: The dynamics of nucleation for the Cahn–Hilliard equation. SIAM J. Appl. Math. 53, 990–1008 (1993)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Bertalmio, M., Sapiro, G., Casselles, V., Ballester, C.: Image inpainting. In: Akeley, K. (ed.) Siggraph 2000, Computer Graphics Proceedings, pp. 417–424. ACM Press/Addison-Wesley, New York (2000)Google Scholar
  3. 3.
    Bertalmio, M., Bertozzi, A., Sapiro, G.: Navier–Stokes, fluid dynamics, and image and video inpainting. Proc. IEEE Comput. Vis. Pattern Recognit. 1, 335–362 (2001)Google Scholar
  4. 4.
    Bertozzi, A., Esedoglu, S., Gillette, A.: Inpainting of binary images using the Cahn–Hilliard equation. IEEE Trans. Image Proc. 16, 285–291 (2007)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Bertozzi, A., Esedoglu, S., Gillette, A.: Analysis of a two-scale Cahn–Hilliard model for binary image inpainting. Multiscale Model. Simul. 6, 913–936 (2007)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Bosch, J., Stoll, M.: A fractional inpainting model based on the vector-valued Cahn–Hilliard equation (preprint)Google Scholar
  7. 7.
    Bosch, J., Kay, D., Stoll, M., Wathen, A.J.: Fast solvers for Cahn–Hilliard inpainting. SIAM J. Image Sci. 7, 67–97 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Boyer, F., Lapuerta, C.: Study of a three component Cahn–Hilliard flow model, M2AN. Model. Math. Anal. Numer. 40, 653–687 (2006)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Braverman, C.: Photoshop Retouching Handbook. IDG Books Worldwide, Foster City (1998)Google Scholar
  10. 10.
    Burger, M., He, L., Schönlieb, C.: Cahn–Hilliard inpainting and a generalization for grayvalue images. SIAM J. Image Sci. 3, 1129–1167 (2009)CrossRefGoogle Scholar
  11. 11.
    Chan, T.F., Kang, S.H., Shen, J.: Euler’s elastica and cuvature-based inpainting. SIAM J. Appl. Math. 63, 564–592 (2002)MATHMathSciNetGoogle Scholar
  12. 12.
    Chan, T.F., Shen, J., Zhou, H.M.: Total variation wavelet inpainting. J. Math. Imaging Vis. 25, 107–125 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Chan, T.F., Shen, J.: Variationnal restoration of nonflat image features: models and algorithms. SIAM J. Appl. Math. 61, 1338–1361 (2001)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Chan, T.F., Shen, J.: Mathematical models of local nontexture inpaintings. SIAM J. Appl. Math. 62, 1019–1043 (2002)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Chan, T.F., Shen, J.: Variationnal image inpainting. Commun. Pure Appl. Math. 58, 579–619 (2005)MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Cherfils, L., Fakih, H., Miranville, A.: On the Bertozzi–Esedoglu–Gillette–Cahn–Hilliard equation with logarithmic nonlinear terms, SIAM J. Imaging Sci. 8, 1123–1140 (2015)Google Scholar
  17. 17.
    Cherfils, L., Miranville, A., Zelik, S.: On a generalized Cahn–Hilliard equation with biological applications. Discrete Contin. Dyn. Syst. B 19, 2013–2026 (2014)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Cherfils, L., Fakih, H., Miranville, A.: Finite-dimensional attractors for the Bertozzi–Esedoglu–Gillette–Cahn–Hilliard equation in image inpainting. Inverse Probl. Imaging 9, 105–125 (2015)MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Conti, M., Gatti, S., Miranville, A.: Multi-component Cahn–Hilliard systems with dynamic boundary conditions. Nonlinear Anal. Ser. B 25, 137–166 (2015)Google Scholar
  20. 20.
    Dobrosotskaya, J.A., Bertozzi, A.: A Wavelet–Laplace variational technique for image deconvolution and inpainting. Trans. Image Proc. 17, 657–663 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Dolcetta, I.C., Vita, S.F., March, R.: Area-preserving curve-shortening flows: from phase separation to image processing. Interfaces Free Bound 4, 325–343 (2002)MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Eden, A., Foias, C., Nicolaenko, B., Temam, R.: Expenential Attractors for Dissipative Evolution Equations, Research in Applied Mathematics, vol. 37. John-Wiley, New York (1994)Google Scholar
  23. 23.
    Efendiev, M., Miranville, A., Zelik, S.: Exponential attractors for a nonlinear reaction–diffusion system in \(\mathbb{R}^{3}\). C.R. Acad. Sci. Paris Sér. I Math. 330, 713–718 (2000)MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Efendiev, M., Miranville, A., Zelik, S.: Exponential attractors for a singularly perturbed Cahn–Hilliard system. Math. Nachr. 272, 11–31 (2004)MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Elliott, C.M., Luckhaus, S.: A generalised diffusion equation for phase separation of a multicomponent mixture with interfacial free energy, SFB256 University of Bonn. Preprint 195 (1991)Google Scholar
  26. 26.
    Elliott, C.M.: The Cahn–Hilliard model for the kinetics of phase separation. In: Mathematical Models for Phase Change Problems, pp. 35–73. Birkhäuser, Basel (1989)Google Scholar
  27. 27.
    Elliott, C.M., French, D.A., Milner, F.A.: A second order splitting method for the Cahn–Hilliard equation. Numer. Math. 54, 575–590 (1989)MATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Emile-Male, G.: The Restorer’s Handbook of Easel Painting. Van Nostrand Reinhold, New York (1976)Google Scholar
  29. 29.
    Esedoglu, S., Shen, J.: Digital inpainting based on the Mumford–Shah–Euler image model. Eur. J. Appl. Math. 13, 353–370 (2002)MATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Eyre, J.D.: Systems of Cahn–Hilliard equations. SIAM J. Appl. Math. 53, 1686–1712 (1993)MATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    FreeFem++ is freely. http://www.freefem.org/ff++
  32. 32.
    Garcke, H., Nestler, B., Stoth, B.: On anisotropic order parameter models for multi-phase systems and their sharp interface limits. Phys. D 115, 87–108 (1998)MATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    Grasselli, M., Pierre, M.: A splitting method for the Cahn–Hilliard equation with inertial term. Math. Models Methods Appl. Sci. 20, 1–28 (2010)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Injrou, S., Pierre, M.: Stable discretizations of the Cahn–Hilliard–Gurtin equations. Discrete Contin. Dyn. Syst. 22, 1065–1080 (2008)MATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    King, D.: The Commissar Vanishes. Henry Holt and Company, New York (1997)Google Scholar
  36. 36.
    Kokaram, A.C.: Motion Picture Restoration: Digital Algorithms for Artefact Suppression in Degraded Motion Picture Film and Video. Springer Verlag, New York (1998)CrossRefGoogle Scholar
  37. 37.
    Li, D., Zhong, C.: Global attractor for the Cahn–Hilliard system with fast growing nonlinearity. J. Differ. Equ. 149, 191–210 (1998)MATHMathSciNetCrossRefGoogle Scholar
  38. 38.
    Masnou, S., Morel, J.M.: Level lines based disocclusion. In: Proceedings of the 5th IEEE International Conference on Image Processing, vol. 3, pp. 259–263 (1998)Google Scholar
  39. 39.
    Miranville, A., Zelik, S.: Attractors for dissipative partial differential equations in bounded and unbounded domains. In: Dafermos, C.M., Pokorny, M. (eds.) Handbook of Differential Equations, Evolutionary Partial Differential Equations, vol. 4, pp. 103–200. Elsevier, Amsterdam (2008)Google Scholar
  40. 40.
    Novick-Cohen, A., Segel, L.A.: Nonlinear aspects of the Cahn–Hilliard equation. Phys. D 10, 277–298 (1984)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Rudin, L., Osher, S.: Total variation based image restoration with free local constraints. In: Proceedings of the 1st IEEE ICIP, vol 1, pp. 259–268 (1994)Google Scholar
  42. 42.
    Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)MATHCrossRefGoogle Scholar
  43. 43.
    Taylor, J.E., Cahn, J.W.: Linking anisotropic sharp and diffuse surface motion laws via gradient flows. J. Stat. Phys. 77, 183–197 (1994)MATHMathSciNetCrossRefGoogle Scholar
  44. 44.
    Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edn. Springer-Verlag, New York (1997)Google Scholar
  45. 45.
    Tsai, A., Yezzi, J.A., Willsky, A.S.: Curve evolution implementation of the Mumford–Shah functional for image segmentation, denoising, interpolation, and magnification. Trans. Image Proc. 10, 1169–1186 (2001)MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Laurence Cherfils
    • 1
  • Hussein Fakih
    • 2
  • Alain Miranville
    • 2
  1. 1.Laboratoire Mathématiques, Image et ApplicationsUniversité de la RochelleLa Rochelle CedexFrance
  2. 2.Laboratoire de Mathématiques et Applications, UMR CNRS 7348 - SP2MIUniversité de PoitiersChasseneuil Futuroscope CedexFrance

Personalised recommendations