Journal of Mathematical Imaging and Vision

, Volume 53, Issue 3, pp 346–363 | Cite as

On a Fast Bilateral Filtering Formulation Using Functional Rearrangements



We introduce an exact reformulation of a broad class of neighborhood filters, among which the bilateral filters, in terms of two functional rearrangements: the decreasing and the relative rearrangements. Independently of the image spatial dimension (one-dimensional signal, image, volume of images, etc.), we reformulate these filters as integral operators defined in a one-dimensional space corresponding to the level sets measures. We prove the equivalence between the usual pixel-based version and the rearranged version of the filter. When restricted to the discrete setting, our reformulation of bilateral filters extends previous results for the so-called fast bilateral filtering. We, in addition, prove that the solution of the discrete setting, understood as constant-wise interpolators, converges to the solution of the continuous setting. Finally, we numerically illustrate computational aspects concerning quality approximation and execution time provided by the rearranged formulation.


Neighborhood filters Bilateral filter Decreasing rearrangement Relative rearrangement Denoising 

Mathematics Subject Classification




The authors are partially supported by the Spanish DGI Project MTM2013-43671-P. The authors thank to the anonymous reviewers for their interesting comments and suggestions, that highly contributed to the improvement of our work.


  1. 1.
    Adams, A., Gelfand, N., Dolson, J., Levoy, M.: Gaussian kd-trees for fast high-dimensional filtering. ACM Trans. Graph. 28, 21:1–21:12 (2009)CrossRefGoogle Scholar
  2. 2.
    Adams, A., Baek, J., Davis, M.A.: Fast high-dimensional filtering using the permutohedral lattice. Comput. Graph. Forum 29(2), 753–762 (2010)CrossRefGoogle Scholar
  3. 3.
    Álvarez, L., Lions, P.L., Morel, J.M.: Image selective smoothing and edge detection by nonlinear diffusion, II. SIAM J. Numer. Anal. 29, 845–866 (1992)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Alvarez, L., Mazorra, L.: Signal and image restoration using shock filters and anisotropic diffusion. SIAM J. Numer. Anal. 31(2), 590–605 (1994)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Alvino, A., Trombetti, G.: Sulle migliori costanti di maggiorazione per una classe di equationi ellittiche degeneri. Ricerche Mat 27, 413–428 (1978)MATHMathSciNetGoogle Scholar
  6. 6.
    Alvino, A., Díaz, J.I., Lions, P.L., Trombetti, G.: Elliptic equations and steiner symmetrization. Commun. Pure Appl. Math. XLIX, 217–236 (1996)CrossRefGoogle Scholar
  7. 7.
    Bandle, C.: Isoperimetric Inequalities and Applications. Pitman, Boston (1980)MATHGoogle Scholar
  8. 8.
    Barash, D.: Fundamental relationship between bilateral filtering, adaptive smoothing, and the nonlinear diffusion equation. IEEE T. Pattern Anal. 24(6), 844–847 (2002)CrossRefGoogle Scholar
  9. 9.
    Barash, D., Comaniciu, D.: A common framework for nonlinear diffusion, adaptive smoothing, bilateral filtering and mean shift. Image Vision Comput. 22(1), 73–81 (2004)CrossRefGoogle Scholar
  10. 10.
    Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model Simul. 4(2), 490–530 (2005)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Buades, A., Coll, B., Morel, J.M.: Neighborhood filters and PDE’s. Numer. Math 105(1), 1–34 (2006)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Buades, A., Coll, B., Morel, J.M.: Image denoising methods. A new nonlocal principle. SIAM Rev. 52(1), 113–147 (2010)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Chaudhury, K.N., Sage, D., Unser, M.: Fast O(1) bilateral filtering using trigonometric range kernels. TIP 20(12), 3376 (2011)MathSciNetGoogle Scholar
  14. 14.
    Díaz, J.I., Nagai, T.: Symmetrization in a parabolic-elliptic system related to chemotaxis. Adv. Math. Sci. Appl. 5, 659–680 (1995)MATHMathSciNetGoogle Scholar
  15. 15.
    Díaz, J.I., Rakotoson, J.M.: On a nonlocal stationary free boundary problem arising in the confinement of a plasma in a Stellarator geometry. Arch. Ration. Mech. Anal. 134(1), 53–95 (1996)MATHCrossRefGoogle Scholar
  16. 16.
    Díaz, J.I., Padial, J.F., Rakotoson, J.M.: Mathematical treatement of the magnetic confinement in a current carrying Stellerator. Nonlinear Anal. TMA 34, 857–887 (1998)MATHCrossRefGoogle Scholar
  17. 17.
    Durand, F., Dorsey, J.: Fast bilateral filtering for the display of high-dynamic-range images. ACM Siggraph 21, 257–266 (2002)Google Scholar
  18. 18.
    Eisemann, E., Durand, F.: Flash photography enhancement via intrinsic relighting. Siggraph 23(3), 673–678 (2004)CrossRefGoogle Scholar
  19. 19.
    Elad, M.: On the origin of the bilateral filter and ways to improve it. IEEE Trans. Image Process. 11(10), 1141–1151 (2002)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Fiorenza, A., Rakotoson, J.M.: Relative rearrangement and Lebesgue spaces \(L^p(\cdot )\) with variable exponent. J. Math. Pures Appl. 88(6), 506–521 (2007)MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Fiorenza, A., Rakotoson, J.M.: Relative rearrangement method for estimating dual norms. Indiana Univ. Math. J. 58(3), 1127–1150 (2009)MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Galiano, G., Velasco, J.: On a non-local spectrogram for denoising one-dimensional signals. Appl. Math. Comput. 244, 859–869 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Galiano, G., Velasco, J.: Neighborhood filters and the decreasing rearrangement. J. Math. Imaging Vision 51(2), 279–295 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model Simul 7(3), 1005–1028 (2008)MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1964)Google Scholar
  26. 26.
    Kass, M., Solomon, J.: Smoothed local histogram filters. ACM TOG 29(4), 100:1–100:10 (2010)CrossRefGoogle Scholar
  27. 27.
    Lieb, E.H., Loss, M.: Analysis, vol. 4. American Mathematical Society, Providence (2001)Google Scholar
  28. 28.
    Milanfar, P.: A tour of modern image filtering: new insights and methods, both practical and theoretical. IEEE Signal Process Mag. 30, 106–128 (2012)CrossRefGoogle Scholar
  29. 29.
    Mossino, J., Temam, R.: Directional derivative of the increasing rearrangement mapping and application to a queer differential equation in plasma physics. Duke Math. J. 48(3), 475–495 (1981)MATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Mossino, J.: Inégalités Isopérmétriques et applications en physique. Hermann, Paris (1984)Google Scholar
  31. 31.
    Mossino, J., Rakotoson, J.M.: Isoperimetric inequalities in parabolic equations. Ann. Sc. Norm. Super. Pisa. Sci. IV 13(1), 51–73 (1986)MATHMathSciNetGoogle Scholar
  32. 32.
    Paris, S., Durand, F.: A fast approximation of the bilateral filter using a signal processing approach. ECCV. Springer, Berlin (2006)Google Scholar
  33. 33.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. 12(7), 629–639 (1990)CrossRefGoogle Scholar
  34. 34.
    Peyré, G.: Image processing with nonlocal spectral bases. Multiscale Model Simulat. 7(2), 703–730 (2008)MATHCrossRefGoogle Scholar
  35. 35.
    Petschnigg, G., Agrawala, M., Hoppe, H., Szeliski, R., Cohen, M., Toyama, K.: Digital photography with flash and no-flash image pairs. ACM Siggraph 23(3), 664–672 (2004)CrossRefGoogle Scholar
  36. 36.
    Pólya, G., Szegö, G.: Isoperimetric Inequalities in Mathematical Physics. Princenton University Press, Princeton (1951)MATHGoogle Scholar
  37. 37.
    Porikli, F.: Constant time O(1) bilateral filtering. In: CVPR (2008)Google Scholar
  38. 38.
    Rakotoson, J.M.: Réarrangement Relatif: Un instrument d’estimations dans les problèmes aux limites, vol. 64. Springer, Berlin (2008)Google Scholar
  39. 39.
    Rakotoson, J.M.: Lipschitz properties in variable exponent problems via relative rearrangement. Chin. Ann. Math. 31B(6), 991–1006 (2010)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Rakotoson, J.M.: New Hardy inequalities and behaviour of linear elliptic equations. J. Funct. Anal. 263(9), 2893–2920 (2008)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Ram, I., Elad, M., Cohen, I.: Image processing using smooth ordering of its patches. IEEE Trans. Image Process. 22(7), 2764–2774 (2013)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1), 259–268 (1992)MATHCrossRefGoogle Scholar
  43. 43.
    Singer, A., Shkolnisky, Y., Nadler, B.: Diffusion interpretation of nonlocal neighborhood filters for signal denoising. SIAM J. Imaging Sci. 2(1), 118–139 (2009)MATHMathSciNetCrossRefGoogle Scholar
  44. 44.
    Smith, S.M., Brady, J.M.: Susan. A new approach to low level image processing. Int. J. Comput. Vision 23(1), 45–78 (1997)Google Scholar
  45. 45.
    Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. (4)110, 353–372 (1976)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision, pp 839–846 (1998)Google Scholar
  47. 47.
    Vázquez, J.L.: Symétrization pour \(u_{t}=\varDelta \phi (u)\) et applications. C. R. Acad. Paris 295, 71–74 (1982)MATHGoogle Scholar
  48. 48.
    Weiss, B.: Fast median and bilateral filtering. ACM Siggraph 25, 519–526 (2006)CrossRefGoogle Scholar
  49. 49.
    Yang, Q., Tan, K.H., Ahuja, N.: Real-time O(1) bilateral filtering. In: CVPR (2009)Google Scholar
  50. 50.
    Yang, Q., Ahuja, N., Tan, K.H.: Constant time median and bilateral filtering. Int. J. Comput. Vis. 9, 41 (2014). doi: 10.1007/s11263-014-0764-y Google Scholar
  51. 51.
    Yaroslavsky, L.P.: Digital Picture Processing. An Introduction. Springer, Berlin (1985)MATHCrossRefGoogle Scholar
  52. 52.
    Yaroslavsky, L.P., Eden, M.: Fundamentals of Digital Optics. Birkhäuser, Boston (2003)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of MathematicsUniversidad de OviedoOviedoSpain

Personalised recommendations