Skip to main content
Log in

Retinex by Higher Order Total Variation \(L^{1}\) Decomposition

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In this paper, we propose a reflectance and illumination decomposition model for the Retinex problem via high-order total variation and \(L^{1}\) decomposition. Based on the observation that illumination varies smoother than reflectance, we propose a convex variational model which can effectively decompose the gradient field of images into salient edges and relatively smoother illumination field through the first- and second-order total variation regularizations. The proposed model can be efficiently solved by a primal–dual splitting method. Numerical experiments on both grayscale and color images show the strength of the proposed model with applications to Retinex illusions, medical image bias field removal, and color image shadow correction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html

References

  1. Benning, M., Brune, C., Burger, M., Müller, J.: Higher-order TV methods-enhancement via Bregman iteration. J. Sci. Comput. 54(2–3), 269–310 (2013). doi:10.1007/s10915-012-9650-3

    Article  MATH  MathSciNet  Google Scholar 

  2. Bergounioux, M., Piffet, L.: A second-order model for image denoising. Set. Valued Var. Anal. 18(3–4), 277–306 (2010). doi:10.1007/s11228-010-0156-6

    Article  MATH  MathSciNet  Google Scholar 

  3. Bertalmo, M., Caselles, V., Provenzi, E.: Issues about Retinex theory and contrast enhancement. Int. J. Comput. Vis. 83(1), 101–119 (2009). doi:10.1007/s11263-009-0221-5

    Article  Google Scholar 

  4. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010). doi:10.1137/090769521

    Article  MATH  MathSciNet  Google Scholar 

  5. Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997). doi:10.1007/s002110050258

    Article  MATH  MathSciNet  Google Scholar 

  6. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011). doi:10.1007/s10851-010-0251-1

    Article  MATH  MathSciNet  Google Scholar 

  7. Chan, T.F., Esedolu, S.: Aspects of total variation regularized \(\ell _1\) function approximation. SIAM J. Appl. Math. 65(5), 1817–1837 (2005). http://www.jstor.org/stable/4096154

  8. Chan, T.F., Kang, S.H.: Euler’s elastica and curvature based inpaintings. SIAM J. Appl. Math. 63, 564–592 (2002). doi:10.1137/S0036139901390088

    MATH  MathSciNet  Google Scholar 

  9. Demengel, F.: Fonctions hessien born. Annales de l’institut Fourier 34(2), 155–190 (1984). http://eudml.org/doc/74627

  10. Esser, E., Zhang, X., Chan, T.F.: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J. Imaging Sci. 3, 1015–1046 (2010). doi:10.1007/s10915-010-9408-8

    Article  MATH  MathSciNet  Google Scholar 

  11. Gabay, D.: Applications of the method of multipliers to variational inequalities, Augmented Lagrangian methods: applications to the solution of boundary-value problems, 15, chap. IX, pp. 299–331 (1983)

  12. Goldstein, T., Osher, S.: The split Bregman method for \(\ell _{1}\)-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009). doi:10.1137/080725891

    Article  MATH  MathSciNet  Google Scholar 

  13. Kimmel, R., Elad, M., Shaked, D., Keshet, R., Sobel, I.: A variational framework for Retinex. Int. J. Comput. Vis. 52(1), 7–23 (2003). doi:10.1023/A:1022314423998

    Article  MATH  Google Scholar 

  14. Land, E.H., McCANN, J.J.: Lightness and Retinex theory. J. Opt. Soc. Am. 61(1), 1–11 (1971). doi:10.1364/JOSA.61.000001. http://www.opticsinfobase.org/abstract.cfm?URI=josa-61-1-1

  15. Logvinenko, A.D.: Lightness induction revisited. PERCEPTION-LONDON-28, 803–816 (1999). doi:10.1068/p2801

  16. Lysaker, M., Lundervold, A., Tai, X.C.: Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans Image Process 12(12), 1579–1590 (2003). doi:10.1109/TIP.2003.819229

    Article  MATH  Google Scholar 

  17. Lysaker, M., Tai, X.C.: Iterative image restoration combining total variation minimization and a second-order functional. Int. J. Comput. Vis. 66(1), 5–18 (2006). doi:10.1007/s11263-005-3219-7

    Article  MATH  Google Scholar 

  18. Ma, W., Morel, J.M., Osher, S., Chien, A.: An \(\ell _{1}\)-based variational model for retinex theory and its application to medical images. In: CVPR, pp. 153–160. IEEE (2011). doi:10.1137/100806588

  19. Ma, W., Osher, S.: A TV bregman iterative model of Retinex theory. Inverse Probl. Imaging 6(4), 697–708 (2012). doi:10.3934/ipi.2012.6.697

    Article  MATH  MathSciNet  Google Scholar 

  20. Marini, D., Rizzi, A.: A computational approach to color adaptation effects. Image Vis. Comput. 18(13), 1005–1014 (2000). doi:10.1016/s0262-8856(00)00037

    Article  Google Scholar 

  21. Morel, J., Petro, A., Sbert, C.: A PDE formalization of Retinex theory. IEEE Trans. Image Process. 19(11), 2825–2837 (2010). doi:10.1109/TIP.2010.2049239

    Article  MathSciNet  Google Scholar 

  22. Ng, M.K., Wang, W.: A total variation model for Retinex. SIAM J. Imaging Sci. 4(1), 345–365 (2011). doi:10.1137/100806588

    Article  MATH  MathSciNet  Google Scholar 

  23. Papafitsoros, K., Schönlieb, C.: A combined first and second order variational approach for image reconstruction. J. Math. Imaging Vis. 48(2), 308–338 (2014). doi:10.1007/s10851-013-0445-4

    Article  MATH  Google Scholar 

  24. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1), 259–268 (1992). doi:10.1016/0167-2789(92)90242-f

    Article  MATH  Google Scholar 

  25. Setzer, S., Steidl, G.: Variational methods with higher order derivatives in image processing. In: N. Press (ed.) Approximation XII, pp. 360–386. Brentwood (2008)

  26. Setzer, S., Steidl, G., Teuber, T.: Infimal convolution regularizations with discrete \(\ell _{1}\)-type functionals. Comm. Math. Sci. 9(3), 797–872 (2011). doi:10.4310/cms.2011.v9.n3.a7

    Article  MATH  MathSciNet  Google Scholar 

  27. Tai, X.C., Hahn, J., Chung, G.J.: A fast algorithm for Euler’s elastica model using augmented Lagrangian method. SIAM J. Imaging Sci. 4(1), 313–344 (2011). doi:10.1137/100803730

    Article  MATH  MathSciNet  Google Scholar 

  28. Yin, W., Goldfarb, D., Osher, S.: The total variation regularized \(L^1\) model for multiscale decomposition. Multiscale Model. Simul. 6 (2007). doi:10.1137/060663027

  29. Zhang, X., Burger, M., Osher, S.: A unified primal-dual algorithm framework based on Bregman iteration. J. Sci. Comput. 46(1), 20–46 (2011). doi:10.1137/09076934X

    Article  MATH  MathSciNet  Google Scholar 

  30. Zosso, D., Tran, G., Osher, S.: A unifying retinex model based on non-local differential operators. In: IS&T/SPIE Electronic Imaging, pp. 865,702–865,702. International Society for Optics and Photonics (2013). doi:10.1117/12.2008839

Download references

Acknowledgments

We would like to thank the authors of [18] and [22] for sharing their source codes, and the reviewers of this manuscript for their helpful comments and suggestions. The work of X. Zhang was supported by NSFC11101277, NSFC91330102 and 973 program (#2015CB856000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Zhang, X. Retinex by Higher Order Total Variation \(L^{1}\) Decomposition. J Math Imaging Vis 52, 345–355 (2015). https://doi.org/10.1007/s10851-015-0568-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-015-0568-x

Keywords

Navigation