Advertisement

Journal of Mathematical Imaging and Vision

, Volume 51, Issue 1, pp 171–194 | Cite as

Inf-structuring Functions: A Unifying Theory of Connections and Connected Operators

  • Benjamin Perret
Article

Abstract

During the last decade, several theories have been proposed in order to extend the notion of set connections in mathematical morphology. These new theories were obtained by generalizing the definition to wider spaces (namely complete lattices) and/or by relaxing some hypothesis. Nevertheless, the links among those different theories are not always well understood, and this work aims at defining a unifying theoretical framework. The adopted approach relies on the notion of inf-structuring function which is simply a mapping that associates a set of sub-elements to each element of the space. The developed theory focuses on the properties of the decompositions given by an inf-structuring function rather than in trying to characterize the properties of the set of connected elements as a whole. We establish several sets of inf-structuring function properties that enable to recover the existing notions of connections, hyperconnections, and attribute space connections. Moreover, we also study the case of grey-scale connected operators that are obtained by stacking set connected operators and we show that they can be obtained using specific inf-structuring functions. This work allows us to better understand the existing theories, it facilitates the reuse of existing results among the different theories and it gives a better view on the unexplored areas of the connection theories.

Keywords

Inf-structuring function Connection Hyperconnection Attribute space connection Connected operator Mathematical morphology 

Notes

Acknowledgments

I warmly thank the coordinating editor, Pr. Ch. Ronse, whose meticulous work has greatly contributed to the correctness of this article.

References

  1. 1.
    Alsaody, S., Serra, J.: Connective segmentation generalized to arbitrary complete lattices. In Soille P., Pesaresi M., Ouzounis G.K. (eds.) Mathematical Morphology and its Applications to Image and Signal Processing. Lecture Notes in Computer Science, vol. 6671, pp. 61–72. Springer, Berlin (2011)Google Scholar
  2. 2.
    Angulo, J., Serra, J.: Morphological coding of color images by vector connected filters. In: Proceedings of the Seventh International Symposium on Signal Processing and Its Applications 2003, vol. 1, pp. 69–72 (2003)Google Scholar
  3. 3.
    Berger, Ch., Geraud, T., Levillain, R., Widynski, N., Baillard, A., Bertin, E.: Effective component tree computation with application to pattern recognition in astronomical imaging. IEEE Int. Conf. Image Process. 4, 41–44 (2007)Google Scholar
  4. 4.
    Birkhoff, G.: Lattice Theory. American Mathematical Society, Providence (1984)Google Scholar
  5. 5.
    Braga-Neto, U.: Multiscale connected operators. J. Math. Imaging Vis. 22(2–3), 199–216 (2005)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Braga-Neto, U., Goutsias, J.: Connectivity on complete lattices: new results. Comput. Vis. Image Underst. 85(1), 22–53 (2002)CrossRefMATHGoogle Scholar
  7. 7.
    Braga-Neto, U., Goutsias, J.: A multiscale approach to connectivity. Comput. Vis. Image Underst. 89(1), 70–107 (2003)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Braga-Neto, U., Goutsias, J.: A theoretical tour of connectivity in image processing and analysis. J. Math. Imaging Vis. 19(1), 5–31 (2003)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Braga-Neto, U., Goutsias, J.: Constructing multiscale connectivities. Comput. Vis. Image Underst. 99(1), 126–150 (2005)CrossRefGoogle Scholar
  10. 10.
    Braga-Neto, U., Goutsias, J.: Object-based image analysis using multiscale connectivity. IEEE Trans. Pattern Anal. Mach. Intell. 27(6), 892–907 (2005)CrossRefGoogle Scholar
  11. 11.
    Carlinet, E., Géraud, T.: A comparison of many max-tree computation algorithms. In: Luengo Hendriks C.L., Borgefors G., Strand R. (eds.) Mathematical Morphology and its Applications to Signal and Image Processing. Lecture Notes in Computer Science, vol. 7883, pp. 73–85. Springer, Berlin (2013)Google Scholar
  12. 12.
    Chassery, J.M.: Connectivity and consecutivity in digital pictures. Comput. Gr. Image Process. 9, 294–300 (1979)CrossRefGoogle Scholar
  13. 13.
    Cousty, J., Najman, L., Perret, B.: Constructive links between some morphological hierarchies on edge-weighted graphs. In: Luengo Hendriks C.L., Borgefors G., Strand R. (eds.) Mathematical Morphology and its Applications to Signal and Image Processing. Lecture Notes in Computer Science, vol. 7883, pp. 86–97. Springer, Berlin (2013)Google Scholar
  14. 14.
    Crespo, J.: Morphological connected filters and intra-region smoothing for image segmentation. PhD thesis, Georgia Institute of Technology, Atlanta, GA, USA, (1993). UMI Order No. GAX94-15632Google Scholar
  15. 15.
    Crespo, J.: Adjacency stable connected operators and set levelings. Image Vis. Comput. 28(10), 1483–1490 (2010)CrossRefGoogle Scholar
  16. 16.
    Crespo, J., Maojo, V.: The strong property of morphological connected alternated filters. J. Math. Imaging Vis. 32(3), 251–263 (2008)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Crespo, J., Schafer, R.W.: Locality and adjacency stability constraints for morphological connected operators. J. Math. Imaging Vis. 7(1), 85–102 (1997)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Géraud, T., Carlinet, E., Crozet, S., Najman, L.: A quasi-linear algorithm to compute the tree of shapes of n-D images. In: Luengo Hendriks C.L., Borgefors G., Strand R. (eds.) Mathematical Morphology and its Applications to Signal and Image Processing. Lecture Notes in Computer Science, vol. 7883, pp. 97–108. Springer, Berlin (2013)Google Scholar
  19. 19.
    Gimenez, D., Evans, A.N.: An evaluation of area morphology scale-spaces for colour images. Comput. Vis. Image Underst. 110(1), 32–42 (2008)CrossRefGoogle Scholar
  20. 20.
    Grätzer, G.: General Lattice Theory. Birkhauser, Basel (2007)Google Scholar
  21. 21.
    Heijmans, H.J.A.M.: Morphological Image Operators. Academic Press, Boston (1994)MATHGoogle Scholar
  22. 22.
    Heijmans, H.J.A.M.: Connected morphological operators for binary images. Comput. Vis. Image Underst. 73(1), 99–120 (1999)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Janowitz, M.F.: A model for ordinal filtering of digital images. Stat. Image Process. Gr. 72, 25–41 (1986)MathSciNetGoogle Scholar
  24. 24.
    Jones, R.: Connected filtering and segmentation using component trees. Comput. Vis. Image Underst. 75(3), 215–228 (1999)CrossRefGoogle Scholar
  25. 25.
    Lantuéjoul, C., Beucher, S.: On the use of the geodesic metric in image analysis. J. Microsc. 121, 29–49 (1980)Google Scholar
  26. 26.
    Lantuéjoul, C., Maisonneuve, F.: Geodesic methods in quantitative image analysis. Pattern Recognit. 17, 177–187 (1984)CrossRefMATHGoogle Scholar
  27. 27.
    Maragos, P., Ziff, R.D.: Threshold superposition in morphological image analysis systems. IEEE Trans. Pattern Anal. Mach. Intell. 12(5), 498–504 (1990)CrossRefGoogle Scholar
  28. 28.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)CrossRefGoogle Scholar
  29. 29.
    Meyer, F.: From connected operators to levelings. In: Heijmans, H.J.A.M., Roerdink, J.B.T.M. (eds.) Mathematical Morphology and its Applications to Image and Signal Processing, pp. 191–198. Kluwer Academic Publishers, Dordrecht (1998)Google Scholar
  30. 30.
    Meyer, F.: The levelings. In: Heijmans, H.J.A.M., Roerdink, J.B.T.M. (eds.) Mathematical Morphology and its Applications to Image and Signal Processing, pp. 199–206. Kluwer Academic Publishers, Dordrecht (1998)Google Scholar
  31. 31.
    Meyer, F., Maragos, P.: Morphological scale-space representation with levelings. In: Proceedings of the Second International Conference on Scale-Space Theories in Computer Vision, SCALE-SPACE ’99, pp. 187–198. Springer, London (1999)Google Scholar
  32. 32.
    Naegel, B., Passat, N.: Component-trees and multi-value images: a comparative study. In: Wilkinson M.H.F., Roerdink J.B.T.M. (eds.) Mathematical Morphology and its Application to Signal and Image Processing. Lecture Notes in Computer Science, vol. 5720, pp. 261–271. Springer, Berlin (2009)Google Scholar
  33. 33.
    Naegel, B., Passat, N.: Towards connected filtering based on component-graphs. In: Luengo Hendriks C.L., Borgefors G., Strand R. (eds.) Mathematical Morphology and its Applications to Signal and Image Processing. Lecture Notes in Computer Science, vol. 7883, pp. 353–364. Springer, Berlin (2013)Google Scholar
  34. 34.
    Naegel, B., Passat, N., Boch, N., Kocher, M.: Segmentation using vector-attribute filters: methodology and application to dermatological imaging. In: Bannon, G.J.F., Barrera, J., Braga-Neto, U.M. (eds.) International Symposium on Mathematical Morphology, Rio de Janeiro, Brazil, vol. 1, pp. 239–250 (2007)Google Scholar
  35. 35.
    Naegel, B., Wendling, L.: A document binarization method based on connected operators. Pattern Recognit. Lett. 31(11), 1251–1259 (2010)CrossRefGoogle Scholar
  36. 36.
    Nagao, M., Matsuyama, T., Ikeda, Y.: Region extraction and shape analysis in aerial photographs. Comput. Gr. Image Process. 10(3), 195–223 (1979)CrossRefGoogle Scholar
  37. 37.
    Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Trans. Image Process. 15(11), 3531–3539 (2006)CrossRefGoogle Scholar
  38. 38.
    Najman, L., Cousty, J., Perret, B.: Playing with Kruskal: algorithms for morphological trees in edge-weighted graphs. In: Luengo Hendriks C.L., Borgefors G., Strand R. (eds.) Mathematical Morphology and its Applications to Signal and Image Processing, Lecture Notes in Computer Science, vol. 7883, pp. 135–146 (2013)Google Scholar
  39. 39.
    Nempont, O., Atif, J., Angelini, E., Bloch, I.: A new fuzzy connectivity measure for fuzzy sets. J. Math. Imaging Vis. 34(2), 107–136 (2009)CrossRefMathSciNetGoogle Scholar
  40. 40.
    Nogly, D., Schladt, M.: Digital topology on graphs. Comput. Vis. Image Underst. 63, 394–396 (1996)CrossRefMATHGoogle Scholar
  41. 41.
    Ouzounis, G.K., Pesaresi, Martino, Soille, P.: Differential area profiles: decomposition properties and efficient computation. IEEE Trans. Pattern Anal. Mach. Intell. 34(8), 1533–1548 (2012)CrossRefGoogle Scholar
  42. 42.
    Ouzounis, G.K., Wilkinson, M.H.F.: Mask-based second-generation connectivity and attribute filters. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 990–1004 (2007)CrossRefGoogle Scholar
  43. 43.
    Ouzounis, G.K., Wilkinson, M.H.F.: Partition-induced connections and operators for pattern analysis. Pattern Recognit. 43(10), 3193–3207 (2010)CrossRefMATHGoogle Scholar
  44. 44.
    Ouzounis, G.K., Wilkinson, M.H.F.: Hyperconnected attribute filters based on k-flat zones. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 224–239 (2011)CrossRefGoogle Scholar
  45. 45.
    Perret, B.: Inf-structuring functions and self-dual marked flattenings in bi-Heyting algebra. In: Luengo Hendriks C.L., Borgefors G., Strand R. (eds.) Mathematical Morphology and its Applications to Signal and Image Processing. Lecture Notes in Computer Science, vol. 7883, pp. 365–376. Springer, Berlin (2013)Google Scholar
  46. 46.
    Perret, B., Cousty, J., Tankyevych, O., Talbot, H., Passat, N.: Directed connected operators: asymmetric hierarchies for image filtering and segmentation. Technical report, Laboratoire d’Informatique Gaspard-Monge - LIGM, Université Paris Est (2013). http://hal.archives-ouvertes.fr/hal-00869727. Accessed 18 June 2014
  47. 47.
    Perret B., Lefèvre S., Collet C.: Toward a new axiomatic for hyper-connections. In: Soille P., Pesaresi M., Ouzounis G.K. (eds.) Proceedings of the 10th International Symposium on Mathematical Morphology and its Applications to Image and Signal Processing (ISMM 2011), Verbania-Intra, Italy, 6–8 July 2011. Lecture Notes in Computer Science, vol. 6671, pp. 85–95. Springer, Berlin (2011)Google Scholar
  48. 48.
    Perret, B., Lefèvre, S., Collet, C., Slezak, E.: Connected component trees for multivariate image processing and applications in astronomy. In: IAPR, International Conference on Pattern Recognition, pp. 4089–4092 (2010)Google Scholar
  49. 49.
    Perret, B., Lefèvre, S., Collet, C., Slezak, É.: Hyperconnections and hierarchical representations for grayscale and multiband image processing. IEEE Trans. Image Process. 21(1), 14–27 (2012)CrossRefMathSciNetGoogle Scholar
  50. 50.
    Ronse, C.: Set-theoretical algebraic approaches to connectivity in continuous or digital spaces. J. Math. Imaging Vis. 8(1), 41–58 (1998)CrossRefMathSciNetGoogle Scholar
  51. 51.
    Ronse, C.: Partial partitions, partial connections and connective segmentation. J. Math. Imaging Vis. 32(2), 97–125 (2008)CrossRefMathSciNetGoogle Scholar
  52. 52.
    Ronse, C.: Idempotent block splitting on partial partitions, I: isotone operators. Order 28(2), 273–306 (2011)CrossRefMATHMathSciNetGoogle Scholar
  53. 53.
    Ronse, C.: Idempotent block splitting on partial partitions, II: non-isotone operators. Order 28(2), 307–339 (2011)CrossRefMATHMathSciNetGoogle Scholar
  54. 54.
    Ronse, C.: Orders on partial partitions and maximal partitioning of sets. In: Soille P., Pesaresi M., Ouzounis G.K. (eds.) Mathematical Morphology and its Applications to Image and Signal Processing. Lecture Notes in Computer Science, vol. 6671, pp. 49–60. Springer, Berlin (2011)Google Scholar
  55. 55.
    Ronse, C.: Axiomatics for oriented connectivity. Pattern Recognit. Lett. 1–9 (2014). doi: 10.1016/j.patrec.2014.03.020
  56. 56.
    Ronse, C., Heijmans, H.J.A.M.: The algebraic basis of mathematical morphology: II. Openings and closings. Comput. Vis. Gr. Image Process. Image Underst. 54(1), 74–97 (1991)MATHGoogle Scholar
  57. 57.
    Ronse, C., Serra, J.: Geodesy and connectivity in lattices. Fundam. Inform. 46(4), 349–395 (2001)MATHMathSciNetGoogle Scholar
  58. 58.
    Salembier, P.: Connected operators based on tree pruning strategies. In: Najman, L., Talbot, H. (eds.) Mathematical Morphology, pp. 179–198. Wiley, Hoboken (2010)Google Scholar
  59. 59.
    Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for image and sequence processing. IEEE Trans. Image Process. 7(4), 555–570 (1998)CrossRefGoogle Scholar
  60. 60.
    Salembier, P., Serra, J.: Flat zones filtering, connected operators, and filters by reconstruction. IEEE Trans. Image Process. 4(8), 1153–1160 (1995)CrossRefGoogle Scholar
  61. 61.
    Serra, J.: Mathematical morphology for Boolean lattices. In: Serra, J. (ed.) Image Analysis and Mathematical Morphology. II: Theoretical Advances, pp. 37–58. Academic Press, London (1988)Google Scholar
  62. 62.
    Serra, J.: Connectivity on complete lattices. J. Math. Imaging Vis. 9(3), 231–251 (1998)CrossRefMATHMathSciNetGoogle Scholar
  63. 63.
    Serra, J.: Connections for sets and functions. Fundam. Inform. 41(1–2), 147–186 (2000)MATHMathSciNetGoogle Scholar
  64. 64.
    Serra, J.: Morphological segmentations of colour images. In: Ronse, C., Najman, L., Decencière, E. (eds.) Mathematical Morphology: 40 Years On. Computational Imaging and Vision, vol. 30, pp. 151–176. Springer, Dordrecht (2005)CrossRefGoogle Scholar
  65. 65.
    Serra, J.: A lattice approach to image segmentation. J. Math. Imaging Vis. 24(1), 83–130 (2006)CrossRefMathSciNetGoogle Scholar
  66. 66.
    Serra, J., Salembier, P.: Connected operators and pyramids. In: Proceedings of SPIE, Algebra and Morphological Image Processing IV, vol. 2030, pp. 65–76 (1993)Google Scholar
  67. 67.
    Tankyevych, O., Talbot, H., Passat, N.: Semi-connections and hierarchies. In: Luengo Hendriks C.L., Borgefors G., Strand R. (eds.) Mathematical Morphology and its Applications to Signal and Image Processing. Lecture Notes in Computer Science, vol. 7883, pp. 157–168 (2013)Google Scholar
  68. 68.
    Tushabe, F.B.: Extending attribute filters to color processing and multi-media applications. PhD thesis, University of Groningen (2010)Google Scholar
  69. 69.
    Weber, K.R., Acton, S.T.: On connected operators in color image processing. J. Electron. Imaging 13(3), 619–629 (2004)CrossRefGoogle Scholar
  70. 70.
    Wendt, P., Coyle, E.J., Gallagher Jr, N.C.: Stack filters. IEEE Trans. Acoust. Speech Signal Process. 34(4), 898–911 (1986)CrossRefGoogle Scholar
  71. 71.
    Westenberg, M.A., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Volumetric attribute filtering and interactive visualization using the max-tree representation. IEEE Trans. Image Process. 16(12), 2943–2952 (2007) Google Scholar
  72. 72.
    Wilkinson, M.H.F.: Attribute-space connectivity and connected filters. Image Vis. Comput. 25(4), 426–435 (2007)CrossRefGoogle Scholar
  73. 73.
    Wilkinson, M.H.F.: An axiomatic approach to hyperconnectivity. In: Wilkinson M.H.F., Roerdink J.B.T.M. (eds.) Proceedings of the 9th International Symposium on Mathematical Morphology and its Application to Signal and Image Processing (ISMM 2009), Groningen, The Netherlands, 24–27 August 2009. Lecture Notes in Computer Science, vol. 5720, pp. 35–46. Springer, Berlin (2009)Google Scholar
  74. 74.
    Wilkinson, M.H.F.: Hyperconnectivity, attribute-space connectivity and path openings: theoretical relationships. In: Wilkinson M.H.F., Roerdink J.B.T.M. (eds.) Proceedings of the 9th International Symposium on Mathematical Morphology and its Application to Signal and Image Processing (ISMM 2009), Groningen, The Netherlands, 24–27 August 2009. Lecture Notes in Computer Science, vol. 5720, pp. 47–58. Springer, Berlin (2009)Google Scholar
  75. 75.
    Wilkinson, M.H.F.: Hyperconnections and openings on complete lattices. In: Soille P., Pesaresi M., Ouzounis G.K. (eds.) Proceedings of the 10th International Symposium on Mathematical Morphology and its Applications to Image and Signal Processing (ISMM 2011), Verbania-Intra, Italy, 6–8 July 2011. Lecture Notes in Computer Science, vol. 6671, pp. 73–84. Springer, Berlin (2011)Google Scholar
  76. 76.
    Xu Y., Géraud T., Najman L.: Morphological filtering in shape spaces: applications using tree-based image representations. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 485–488 (2012)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Laboratoire d’Informatique Gaspard-MongeUniversité Paris-EstNoisy le Grand CedexFrance

Personalised recommendations