Journal of Mathematical Imaging and Vision

, Volume 51, Issue 1, pp 195–208 | Cite as

A Modified Newton Projection Method for \(\ell _1\)-Regularized Least Squares Image Deblurring

  • G. Landi


In recent years, \(\ell _1\)-regularized least squares have become a popular approach to image deblurring due to the edge-preserving property of the \(\ell _1\)-norm. In this paper, we consider the nonnegatively constrained quadratic program reformulation of the \(\ell _1\)-regularized least squares problem and we propose to solve it by an efficient modified Newton projection method only requiring matrix–vector operations. This approach favors nonnegative solutions without explicitly imposing any constraints in the \(\ell _1\)-regularized least squares problem. Experimental results on image deblurring test problems indicate that the developed approach performs well in comparison with state-of-the-art methods.


Image restoration \(\ell _1\) norm based regularization Convex optimization Newton projection methods Inverse Problems 



The author is grateful to the two anonymous referees for many helpful and perceptive suggestions.


  1. 1.
    Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.T.: Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Image Process. 19, 2345–2356 (2010)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.T.: An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems. IEEE Trans. Image Process. 20(3), 681–695 (2011)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Andrew, G., Gao, J.F.: Scalable training of l1-regularized log-linear models. In: Proceedings of the 24th International Conference on Machine Learning (2007)Google Scholar
  4. 4.
    Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Becker, S., Bobin, J., Candès, E.J.: NESTA: a fast and accurate first-order method for sparse recovery. SIAM J. Imaging Sci. 4, 1–39 (2011)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. IOP Publishing, Bristol (1998)CrossRefMATHGoogle Scholar
  7. 7.
    Bertsekas, D.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press, New York (1982)MATHGoogle Scholar
  8. 8.
    Bertsekas, D.: Projected Newton methods for optimization problem with simple constraints. SIAM J. Control Optim. 20(2), 221–245 (1982)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Bertsekas, D.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)MATHGoogle Scholar
  10. 10.
    Bioucas-Dias, J., Figueiredo, M.: A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Process. 16(12), 29923004 (2007)CrossRefGoogle Scholar
  11. 11.
    Bloomfield, P., Steiger, W.: Least Absolute Deviations: Theory, Applications, and Algorithms. Progress in Probability and Statistics. Birkhäuser, Boston (1983)Google Scholar
  12. 12.
    Bonettini, S., Landi, G., Loli Piccolomini, E., Zanni, L.: Scaling techniques for gradient projection-type methods in astronomical image deblurring. Int. J. Comput. Math. 90(1), 9–29 (2013)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Cai, Y., Sun, Y., Cheng, Y., Li, J., Goodison, S.: Fast implementation of l1 regularized learning algorithms using gradient descent methods. In: Proceedings of the 10th SIAM International Conference on Data Mining (SDM), pp. 862–871 (2010)Google Scholar
  14. 14.
    Candès, E., Romberg, J.: Quantitative robust uncertainty principles and optimally sparse decompositions. Found. Comput. Math. 6, 227–254 (2006)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Candès, E., Romberg, J.: Sparsity and incoherence in compressive sampling. Invest. Probl. 23, 969–985 (2007)CrossRefMATHGoogle Scholar
  16. 16.
    Candès, E., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)CrossRefGoogle Scholar
  17. 17.
    Candès, E., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 12071223 (2005)Google Scholar
  18. 18.
    Candès, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489509 (2006)CrossRefGoogle Scholar
  19. 19.
    Chen, S., Donoho, D., Saunders, M.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20, 33–61 (1998)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Daubechies, I., De Friese, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57, 14131457 (2004)CrossRefGoogle Scholar
  21. 21.
    Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 12891306 (2006)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1, 586–597 (2007)CrossRefGoogle Scholar
  23. 23.
    Fu, H., Ng, M.K., Nikolova, M., Barlow, J.L.: Efficient minimization methods of mixed l2-l1 and l1-l1 norms for image restoration. SIAM J. Sci. Comput. 27(6), 1881–1902 (2006)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Gafni, E.M., Bertsekas, D.P.: Two-metric projection methods for constrained optimization. SIAM J. Control. Optim. 22, 936–964 (1984)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Goldstein, T., Osher, S.: The split Bregman method for l1 regularized problems. SIAM J. Imag. Sci. 2(2), 323–343 (2009)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Goldstein, T., Setzer, S.: High-order methods for basis pursuit. Technical Report CAM report 10–41, UCLA (2010)Google Scholar
  27. 27.
    Gong, P., Zhang, C.: A fast dual projected Newton method for l1-regularized least squares. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, IJCAI’11, vol. 2, pp. 1275–1280 (2011)Google Scholar
  28. 28.
    Guerquin-Kern, M., Baritaux, J.-C., Unser, M.: Efficient image reconstruction under sparsity constraints with application to MRI and bioluminescence tomography. In ICASSP, IEEE, pp. 5760–5763 (2011)Google Scholar
  29. 29.
    Guo, X., Li, F., Ng, M.K.: A fast l1-TV algorithm for image restoration. SIAM J. Sci. Comput. 31(3), 2322–2341 (2009)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Hager, W.W., Phan, D.T., Zhang, H.: Gradient-based methods for sparse recovery. SIAM J. Imaging Sci. 4(1), 146–165 (2011)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Hale, E.T., Yin, W., Zhang, Y.: A fixed-point continuation method for l1-regularized minimization with applications to compressed sensing. Technical Report CAAM TR07-07, Rice University, Houston, TX (2007)Google Scholar
  32. 32.
    Hale, E.T., Yin, W., Zhang, Y.: Fixed-point continuation for l1-minimization: methodology and convergence. SIAM J. Optim. 19, 1107–1130 (2008)CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Hansen, P.C., Nagy, J., O’Leary, D.P.: Deblurring Images. Matrices, Spectra and Filtering. SIAM, Philadelphia (2006)CrossRefMATHGoogle Scholar
  34. 34.
    Kim, J., Park, H.: Fast active-set-type algorithms for l1-regularized linear regression. In: Proceedings of the AISTAT, pp. 397–404 (2010)Google Scholar
  35. 35.
    Kim, S.J., Koh, K., Lustig, M., Boyd, S., Gorinevsky, D.: An interior-point method for large-scale l1-regularized least squares. IEEE J. Sel. Top. Signal Process. 1, 606–617 (2007)CrossRefGoogle Scholar
  36. 36.
    Kuo, S.-S., Mammone, R.J.: Image restoration by convex projections using adaptive constraints and the l1 norm. Trans. Sig. Proc. 40(1), 159 (1992)CrossRefGoogle Scholar
  37. 37.
    Landi, G., Loli Piccolomini, E.: Quasi-Newton projection methods and the discrepancy principle in image restoration. Appl. Math. Comput. 218(5), 2091–2107 (2011)CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Landi, G., Loli Piccolomini, E.: An efficient method for nonnegatively constrained total variation-based denoising of medical images corrupted by poisson noise. Comput. Med. Imaging Graph. 36(1), 38–46 (2012)CrossRefMathSciNetGoogle Scholar
  39. 39.
    Landi, G., Loli Piccolomini, E.: An improved Newton projection method for nonnegative deblurring of Poisson-corrupted images with Tikhonov regularization. Numer. Algorithms 60(1), 169–188 (2012)CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    Landi, G., Loli Piccolomini, E.: NPTool: a Matlab software for nonnegative image restoration with Newton projection methods. Numer. Algorithms 62(3), 487–504 (2013)CrossRefMATHMathSciNetGoogle Scholar
  41. 41.
    Lavrentiev, M.M.: Some Improperly Posed Problems of Mathematical Physics. Springer, New York (1967)CrossRefMATHGoogle Scholar
  42. 42.
    Loris, I., Bertero, M., De Mol, C., Zanella, R., Zanni, L.: Accelerating gradient projection methods for l1-constrained signal recovery by steplength selection rules. Appl. Comput. Harmon. Anal. 27(2), 247–254 (2009)CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    Nikolova, M.: Minimizers of cost-functions involving nonsmooth data-fidelity terms. Application to the processing of outliers. SIAM J. Numer. Anal. 40, 965994 (2002)CrossRefMathSciNetGoogle Scholar
  44. 44.
    Schmidt, M.: Graphical model structure learning with L1-regularization. Ph.D. thesis, University of British Columbia (2010)Google Scholar
  45. 45.
    Schmidt, M., Fung, G., Rosalesm, R.: Fast optimization methods for l1 regularization: a comparative study and two new approaches. In: Proceedings of the 18th European Conference on Machine Learning, ECML ’07, Springer, pp. 286–297 (2007)Google Scholar
  46. 46.
    Schmidt, M., Fung, G., Rosales, R.: Optimization methods for l1-regularization. Technical Report TR-2009-19, UBC (2009)Google Scholar
  47. 47.
    Schmidt, M., Kim, D., Sra, S.: Optimization for Machine Learning. Projected Newton-type Methods in Machine Learning. MIT Press, Cambridge (2011)Google Scholar
  48. 48.
    Tautenhahn, U.: On the method of Lavrentiev regularization for nonlinear illposed problems. Invest. Probl. 18, 191–207 (2002)CrossRefMATHMathSciNetGoogle Scholar
  49. 49.
    Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B 58(1), 267288 (1996)Google Scholar
  50. 50.
    Tropp, J.: Just relax: convex programming methods for identifying sparse signals in noise. IEEE Trans. Inf. Theory 52(3), 10301051 (2006)CrossRefMathSciNetGoogle Scholar
  51. 51.
    Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Wiley, New York (1977)MATHGoogle Scholar
  52. 52.
    Tibshirani, R., Hastie, T., Friedman, J.: The Elements of Statistical Learning. Springer Series in Statistics. Springer, New York (2001)Google Scholar
  53. 53.
    van den Berg, E., Friedlander, M.P.: Probing the Pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput. 31, 890–912 (2008)CrossRefMATHMathSciNetGoogle Scholar
  54. 54.
    Vogel, C.R., Oman, M.E.: Iterative methods for total variation denoising. SIAM J. Sci. Comput. 17, 227–238 (1996)CrossRefMATHMathSciNetGoogle Scholar
  55. 55.
    Vogel, C.R.: Computational Methods for Inverse Problems. SIAM, Philadelphia (2002)CrossRefMATHGoogle Scholar
  56. 56.
    Wright, S., Nowak, R., Figueiredo, M.: Sparse reconstruction by separable approximation. IEEE Trans. Signal Process. 57(7), 24792493 (2009)CrossRefMathSciNetGoogle Scholar
  57. 57.
    Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for l1-minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1, 143–168 (2008)CrossRefMATHMathSciNetGoogle Scholar
  58. 58.
    Zhang, J.J., Morini, B.: Solving regularized linear least-squares problems by alternating direction methods with applications to image restoration. ETNA 40, 356–372 (2013)MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of BolognaBolognaItaly

Personalised recommendations