Advertisement

Journal of Mathematical Imaging and Vision

, Volume 49, Issue 2, pp 434–453 | Cite as

An Efficient Remote Sensing Image Denoising Method in Extended Discrete Shearlet Domain

  • Xiang-Yang Wang
  • Yang-Cheng Liu
  • Hong-Ying Yang
Article

Abstract

Denoising of images is one of the most basic tasks of image processing. It is a challenging work to design a edge-preserving image denoising scheme. Extended discrete Shearlet transform (extended DST) is an effective multi-scale and multi-direction analysis method, it not only can exactly compute the shearlet coefficients based on a multiresolution analysis, but also can provide nearly optimal approximation for a piecewise smooth function. Based on extended DST, an image denoising using fuzzy support vector machine (FSVM) is proposed. Firstly, the noisy image is decomposed into different subbands of frequency and orientation responses using the extended DST. Secondly, the feature vector for a pixel in a noisy image is formed by the spatial regularity in extended DST domain, and the FSVM model is obtained by training. Then the extended DST detail coefficients are divided into two classes (edge-related coefficients and noise-related ones) by FSVM training model. Finally, the detail subbands of extended DST coefficients are denoised by using the adaptive Bayesian threshold. Extensive experimental results demonstrate that our method can obtain better performances in terms of both subjective and objective evaluations than those state-of-the-art denoising techniques. Especially, the proposed method can preserve edges very well while removing noise.

Keywords

Image denoising Extended discrete Shearlet transform Fuzzy support vector machine Adaptive Bayesian threshold 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61272416, 60873222, & 60773031, the Open Project Program of Jiangsu Key Laboratory of Image and Video Understanding for Social Safety (Nanjing University of Science and Technology) under Grant No. 30920130122006, the Open Foundation of Zhejiang Key Laboratory for Signal Processing under Grant No. ZJKL_4_SP-OP2013-01, and Liaoning Research Project for Institutions of Higher Education of China under Grant No. L2013407.

References

  1. 1.
    Vijaya Arjunan, R., Vijaya Kumar, V.: Survey analysis of various image denoising techniques—a perspective view. In: Proceedings of the International Conference on VLSI, Communication and Instrumentation, Kottayam, India, pp. 704–708 (2011) Google Scholar
  2. 2.
    Chatterjee, P., Milanfa, P.: Patch-based near-optimal image denoising. IEEE Trans. Image Process. 21(4), 1635–1649 (2012) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Liu, C., Szeliski, R., Kang, S.B.: Automatic estimation and removal of noise from a single image. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 299–3142 (2008) CrossRefGoogle Scholar
  4. 4.
    Brox, T., Kleinschmidt, O., Cremers, D.: Efficient nonlocal means for denoising of textural patterns. IEEE Trans. Image Process. 17(7), 1057–1092 (2008) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Buades, A., Coll, B., Morel, J.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 290–530 (2005) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Pardo, A.: Analysis of non-local image denoising methods. Pattern Recognit. Lett. 32(16), 2145–2149 (2011) MathSciNetCrossRefGoogle Scholar
  7. 7.
    Van, D.V.D., Kocher, M.: SURE-based non-local means. IEEE Signal Process. Lett. 16(11), 973–976 (2009) CrossRefGoogle Scholar
  8. 8.
    Coupe, P., Manjón, J.V., Robles, M.: Adaptive multiresolution non-local means filter for three-dimensional magnetic resonance image denoising. IET Image Process. 6(5), 558–568 (2012) MathSciNetCrossRefGoogle Scholar
  9. 9.
    Van, D.V.D., Kocher, M.: Nonlocal means with dimensionality reduction and SURE-based parameter selection. IEEE Trans. Image Process. 20(9), 2683–2690 (2011) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Rehman, A., Wang, Z.: SSIM-based non-local means image denoising. In: The 18th IEEE International Conference on Image Processing (ICIP), pp. 217–220 (2011) Google Scholar
  11. 11.
    Salmon, J., Strozecki, Y.: Patch reprojections for non-local methods. Signal Process. 92(2), 477–489 (2012) CrossRefGoogle Scholar
  12. 12.
    Ji, Z., Chena, Q., Suna, Q.-S., et al.: A moment-based nonlocal-means algorithm for image denoising. Inf. Process. Lett. 109(23–24), 1238–1244 (2009) MATHCrossRefGoogle Scholar
  13. 13.
    Dabov, K., Foi, A., Katkovnik, V., et al.: Image denoising by sparse 3d transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Salmon, J.: On two parameters for denoising with non-local means. IEEE Signal Process. Lett. 17(3), 269–272 (2010) MathSciNetCrossRefGoogle Scholar
  15. 15.
    Katkovnik, V., Foi, A., Egiazarian, K., Astola, J.: From local kernel to nonlocal multiple-model image denoising. Int. J. Comput. Vis. 86(1), 1–32 (2010) MathSciNetCrossRefGoogle Scholar
  16. 16.
    Roth, S., Black, M.J.: Steerable random fields. In: The 11th International Conference on Computer Vision (ICCV 2007), pp. 1–8 (2007) Google Scholar
  17. 17.
    Cao, Y., Luo, Y., Yang, S.: Image denoising based on hierarchical Markov random field. Pattern Recognit. Lett. 32(2), 368–374 (2011) CrossRefGoogle Scholar
  18. 18.
    Chen, S., Liu, M., Zhang, W.: Edge preserving image denoising with a closed form solution. Pattern Recognit. 46(3), 976–988 (2013) MATHCrossRefGoogle Scholar
  19. 19.
    Gao, Q., Roth, S.: How well do filter-based MRFs model natural images. In: Pattern Recognition, pp. 62–72. Springer, Berlin (2012) CrossRefGoogle Scholar
  20. 20.
    Ho, J., Hwang, W.L.: Image denoising using wavelet Bayesian network models. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1105–1108 (2012) CrossRefGoogle Scholar
  21. 21.
    Li, Y.P., Huttenlocher, D.P.: Sparse long-range random field and its application to image denoising. In: Proceedings of European Conference on Computer Vision (ECCV). Lecture Notes in Computer Science, vol. 5304, pp. 344–357 (2008) Google Scholar
  22. 22.
    Barbu, A.: Learning real-time MRF inference for image denoising. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009), pp. 1574–1581 (2009) CrossRefGoogle Scholar
  23. 23.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of the 1998 IEEE International Conference on Computer Vision, Washington, DC, pp. 839–846 (1998) Google Scholar
  24. 24.
    Zhang, M., Gunturk, B.K.: Multiresolution bilateral filtering for image denoising. IEEE Trans. Image Process. 17(12), 2324–2333 (2008) MathSciNetCrossRefGoogle Scholar
  25. 25.
    Liu, G., Ma, W., Ma, Y.: Combination of curvelet threshold with bilateral filtering for image denoising. In: 2012 International Conference on Audio, Language and Image Processing (ICALIP), pp. 469–474 (2012) CrossRefGoogle Scholar
  26. 26.
    Yu, H., Zhao, L., Wang, H.: Image denoising using trivariate shrinkage filter in the wavelet domain and joint bilateral filter in the spatial domain. IEEE Trans. Image Process. 18(10), 2364–2369 (2009) MathSciNetCrossRefGoogle Scholar
  27. 27.
    Lin, C.H., Tsai, J.S., Chiu, C.T.: Switching bilateral filter with a texture/noise detector for universal noise removal. IEEE Trans. Image Process. 19(9), 2307–2320 (2010) MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zhang, K., Lafruit, G., Lauwereins, R.: Constant time joint bilateral filtering using joint integral histograms. IEEE Trans. Image Process. 21(9), 4309–4314 (2012) MathSciNetCrossRefGoogle Scholar
  29. 29.
    Tian, C., Krishnan, S.: Accelerated bilateral filtering with block skipping. IEEE Signal Process. Lett. 20(5), 419 (2013) CrossRefGoogle Scholar
  30. 30.
    Hu, J., Li, S.: Fusion of panchromatic and multispectral images using multiscale dual bilateral filter. In: The 18th IEEE International Conference on Image Processing (ICIP), pp. 1489–1492 (2011) Google Scholar
  31. 31.
    Lefkimmiatis, S., Maragos, P., Papandreou, G.: Bayesian inference on multiscale models for Poisson intensity estimation: applications to photon-limited image denoising. IEEE Trans. Image Process. 18(8), 1724–1741 (2009) MathSciNetCrossRefGoogle Scholar
  32. 32.
    Fathi, A., Naghsh-Nilchi, A.R.: Efficient image denoising method based on a new adaptive wavelet packet thresholding function. IEEE Trans. Image Process. 21(9), 3981–3990 (2012) MathSciNetCrossRefGoogle Scholar
  33. 33.
    Rabbani, H., Gazor, S.: Image denoising employing local mixture models in sparse domains. IET Image Process. 4(5), 413–428 (2010) CrossRefGoogle Scholar
  34. 34.
    Yu, G., Sapiro, G., Mallat, S.: Solving inverse problems with piecewise linear estimators: from Gaussian mixture models to structured sparsity. IEEE Trans. Image Process. 21(5), 2481–2499 (2012) MathSciNetCrossRefGoogle Scholar
  35. 35.
    Yin, S., Cao, L., Ling, Y.: Image denoising with anisotropic bivariate shrinkage. Signal Process. 91(8), 2078–2090 (2011) MATHCrossRefGoogle Scholar
  36. 36.
    Chen, G., Zhu, W.P., Xie, W.: Wavelet-based image denoising using three scales of dependency. IET Image Process. 6(6), 756–760 (2012) MathSciNetCrossRefGoogle Scholar
  37. 37.
    Peleg, T., Eldar, Y.C., Elad, M.: Exploiting statistical dependencies in sparse representations for signal recovery. IEEE Trans. Signal Process. 60(5), 2286–2303 (2012) MathSciNetCrossRefGoogle Scholar
  38. 38.
    Dong, W., Wu, X., Shi, G.: Context-based bias removal of statistical models of wavelet coefficients for image denoising. In: The 16th IEEE International Conference on Image Processing (ICIP), pp. 3841–3844 (2009) Google Scholar
  39. 39.
    Strang, G.: Introduction to Applied Math. Wellesley-Cambridge Press, Wellesley (1986) Google Scholar
  40. 40.
    Chen, D., MacLachlan, S., Kilmer, M.: Iterative parameter-choice and multigrid methods for anisotropic diffusion denoising. SIAM J. Sci. Comput. 33(5), 2972–2994 (2011) MATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    Liu, F., Liu, J.: Anisotropic diffusion for image denoising based on diffusion tensors. J. Vis. Commun. Image Represent. 23(3), 516–521 (2012) CrossRefGoogle Scholar
  42. 42.
    Tsiotsios, C., Petrou, M.: On the choice of the parameters for anisotropic diffusion in image processing. Pattern Recognit. 46(5), 1369–1381 (2013) CrossRefGoogle Scholar
  43. 43.
    Hajiaboli, M.R.: An anisotropic fourth-order diffusion filter for image noise removal. Int. J. Comput. Vis. 92(2), 177–191 (2011) MATHMathSciNetCrossRefGoogle Scholar
  44. 44.
    Qiu, Z., Yang, L., Lu, W.: A new feature-preserving nonlinear anisotropic diffusion for denoising images containing blobs and ridges. Pattern Recognit. Lett. 33(3), 319–330 (2012) CrossRefGoogle Scholar
  45. 45.
    Krissian, K., Aja-Fernández, S.: Noise-driven anisotropic diffusion filtering of MRI. IEEE Trans. Image Process. 18(10), 2265–2274 (2009) MathSciNetCrossRefGoogle Scholar
  46. 46.
    Li, H.C., Fan, P.Z., Khan, M.K.: Context-adaptive anisotropic diffusion for image denoising. Electron. Lett. 48(14), 827–829 (2012) CrossRefGoogle Scholar
  47. 47.
    Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998) MATHGoogle Scholar
  48. 48.
    Wu, D., Peng, D., Tian, J.: Image denoising using local adaptive least squares support vector regression. Geo-Spat. Inf. Sci. 10(3), 196–199 (2007) MathSciNetCrossRefGoogle Scholar
  49. 49.
    Lin, T.C., Yeh, C.T., Liu, M.K.: Application of SVM-based filter using LMS learning algorithm for image denoising. In: Neural Information Processing, Models and Applications. Lecture Notes in Computer Science, vol. 6444, pp. 82–90 (2010) CrossRefGoogle Scholar
  50. 50.
    Zhang, S., Chen, Y.: Image denoising based on wavelet support vector machine. In: 2006 International Conference on Computational Intelligence and Security, pp. 1809–1812 (2006) CrossRefGoogle Scholar
  51. 51.
    Lin, T.C.: Decision-based filter based on SVM and evidence theory for image noise removal. Neural Comput. Appl. 21(4), 695–703 (2012) CrossRefGoogle Scholar
  52. 52.
    Li, M., Yang, J., Su, Z.Y.: Support vector regression based color image restoration in YUV color space. J. Shanghai Jiaotong Univ. 15(1), 31–35 (2010) CrossRefGoogle Scholar
  53. 53.
    Zhang, G.D., Yang, X.H., Xu, H.: Image denoising based on support vector machine. In: 2012 Spring Congress on Engineering and Technology (S-CET), pp. 1–4 (2012) CrossRefGoogle Scholar
  54. 54.
    Lin, C., Wang, S.: Fuzzy support vector machines. IEEE Trans. Neural Netw. 13(2), 464–471 (2002) CrossRefGoogle Scholar
  55. 55.
    Wang, Y., Wang, S., Lai, K.K.: A new fuzzy support vector machine to evaluate credit risk. IEEE Trans. Fuzzy Syst. 13(6), 820–831 (2005) CrossRefGoogle Scholar
  56. 56.
    Lim, W.Q.: The discrete shearlet transform: a new directional transform and compactly supported shearlet frames. IEEE Trans. Image Process. 19(5), 1166–1180 (2010) MathSciNetCrossRefGoogle Scholar
  57. 57.
    Firouzmanesh, A., Boulanger, P.: Image de-blurring using shearlets. In: The Ninth Conference on Computer and Robot Vision (CRV), pp. 167–173 (2012) Google Scholar
  58. 58.
    Balster, E.J., Zheng, Y.F., Ewing, R.L.: Feature-based wavelet shrinkage algorithm for image denoising. IEEE Trans. Image Process. 14(12), 2024–2039 (2005) CrossRefGoogle Scholar
  59. 59.
    Chen, Y., Ji, Z., Hua, C.: Spatial adaptive Bayesian wavelet threshold exploiting scale and space consistency. Multidimens. Syst. Signal Process. 19(1), 157–170 (2008) MATHMathSciNetCrossRefGoogle Scholar
  60. 60.
    Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Xiang-Yang Wang
    • 1
    • 2
  • Yang-Cheng Liu
    • 1
  • Hong-Ying Yang
    • 1
  1. 1.School of Computer and Information TechnologyLiaoning Normal UniversityDalianP.R. China
  2. 2.Jiangsu Key Laboratory of Image and Video Understanding for Social SafetyNanjing University of Science and TechnologyNanjingP.R. China

Personalised recommendations