Advertisement

Journal of Mathematical Imaging and Vision

, Volume 49, Issue 2, pp 296–316 | Cite as

Stochastic Level Set Dynamics to Track Closed Curves Through Image Data

  • C. Avenel
  • E. Mémin
  • P. Pérez
Article

Abstract

We introduce a stochastic filtering technique for the tracking of closed curves from image sequence. For that purpose, we design a continuous-time dynamics that allows us to infer inter-frame deformations. The curve is defined by an implicit level-set representation and the stochastic dynamics is expressed on the level-set function. It takes the form of a stochastic partial differential equation with a Brownian motion of low dimension. The evolution model we propose combines local photometric information, deformations induced by the curve displacement and an uncertainty modeling of the dynamics. Specific choices of noise models and drift terms lead to an evolution law based on mean curvature as in classic level set methods, while other choices yield new evolution laws. The approach we propose is implemented through a particle filter, which includes color measurements characterizing the target and the background photometric probability densities respectively. The merit of this filter is demonstrated on various satellite image sequences depicting the evolution of complex geophysical flows.

Keywords

Level sets Stochastic curve evolution model Curve tracking Bayesian sequential filter 

Notes

Acknowledgements

We thank the CERSAT/IFREMER laboratory and Meteo-France for having provided us the ice density satellite image and the meteorological infra-red sequence. The authors acknowledge the ANR projects PREVASSEMBLE (ANR-08-COSI-012) and Geo-Fluids (ANR-09-SYSC-005) for their financial support.

References

  1. 1.
    Allaire, G., Jouve, F., Toader, A.-M.: Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194(1), 363–393 (2004) CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Arnaud, E., Mémin, E.: Partial linear Gaussian model for tracking in image sequences using sequential Monte Carlo methods. Int. J. Comput. Vis. 74(1), 75–102 (2007) CrossRefGoogle Scholar
  3. 3.
    Artana, G., Cammilleri, A., Carlier, J., Mémin, E.: Strong and weak constraint variational assimilations for reduced order fluid flow modeling. J. Comput. Phys. 231(8), 3264–3288 (2012) CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Avenel, C., Mémin, E., Pérez, P.: Tracking closed curves with non-linear stochastic filters. In: Conf. on Scale Space and Variational Methods (SSVM’09). Voss, Norway (2009) Google Scholar
  5. 5.
    Avenel, C., Mémin, E., Pérez, P.: Stochastic filtering of level sets for curve tracking. In: International Conference on Pattern Recognition (ICPR’10) (2010) Google Scholar
  6. 6.
    Avenel, C., Mémin, E., Pérez, P.: Tracking levels representation driven by a stochastic dynamics. In: 7th International Conference on Curves and Surfaces. Lecture Notes in Computer Science, vol. 6920, pp. 130–141 (2012) CrossRefGoogle Scholar
  7. 7.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997) CrossRefMATHGoogle Scholar
  8. 8.
    Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001) CrossRefMATHGoogle Scholar
  9. 9.
    Chang, Y., Hou, T., Merriman, B., Osher, S.: A level set formulation of Eulerian interface capturing methods for incompressible fluid flows. J. Comput. Phys. 449–464 (1996) Google Scholar
  10. 10.
    Coqrelle, M., Cottet, G.-H.: A vortex level set method for the two-way interacting coupling of an incompressible fluid with colliding rigid bodies. J. Comput. Phys. 227, 9121–9137 (2008) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Cottet, G.-H., Maitre, E.: A level set method for fluid structure interactions with immersed surfaces. Math. Models Methods Appl. Sci. 16(3), 415–438 (2006) CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Crisan, D., Doucet, A.: Survey of convergence results on particle filtering methods for practitioners. IEEE Trans. Signal Process. 50(3), 736–746 (2002) CrossRefMathSciNetGoogle Scholar
  13. 13.
    Crisan, D., Rosovskii, B. (eds.): The Oxford Handbook of Nonlinear Filtering. Oxford University Press, London (2010) Google Scholar
  14. 14.
    Dambreville, S., Rathi, Y., Tannenbaum, A.: Tracking deformable objects with unscented Kalman filtering and geometric active contours. In: American Control Conference, pp. 1–6 (2006) Google Scholar
  15. 15.
    Del Moral, P.: Feynman-Kac Formulae Genealogical and Interacting Particle Systems with Applications. Probability and Applications. Springer, New York (2004) CrossRefMATHGoogle Scholar
  16. 16.
    Dervieux, A., Thomasset, F.: A finite element method for the simulation of Rayleigh-Taylor instability. In: Approximation Methods for Navier-Stokes Problems. Lecture Notes in Mathematics, vol. 771, pp. 145–159. Springer, Berlin (1979) CrossRefGoogle Scholar
  17. 17.
    Goldenberg, R., Kimmel, R., Rivlin, E., Rudzsky, M.: Fast geodesic active contours. IEEE Trans. Image Process. 10(10), 1467–1475 (2001) CrossRefMathSciNetGoogle Scholar
  18. 18.
    Gordon, N., Salmond, D., Smith, A.: Novel approach to non-linear/non-Gaussian Bayesian state estimation. IEEE Process. F 140(2) (1993) Google Scholar
  19. 19.
    Gordon, N., Doucet, A., Freitas, J.D.: Sequential Monte Carlo Methods in Practice. Springer, Berlin (2001) MATHGoogle Scholar
  20. 20.
    Hou, T., Lowengrub, J., Shelley, M.: Removing the stiffness from interfacial flows and surface tension. J. Comput. Phys. 114(2), 312–338 (1994) CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Hou, T., Klapper, I., Si, H.: Removing the stiffness of curvature in computing 3D filaments. J. Comput. Phys. 143(2), 628–664 (1998) CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted eno schemes. J. Comput. Phys. 126(1), 202–228 (1996) CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Kimmel, R., Bruckstein, A.M.: Tracking level sets by level sets: a method for solving the shape from shading problem. Comput. Vis. Image Underst. 62(1), 47–58 (1995) CrossRefGoogle Scholar
  24. 24.
    Kunita, H.: Stochastic Flows and Stochastic Differential Equations. Cambridge University Press, Cambridge (1990) MATHGoogle Scholar
  25. 25.
    Merriman, B., Bence, J., Osher, S.: Motion of multiple junctions: a level set approach. J. Comput. Phys. 112(2), 334–363 (1994) CrossRefMathSciNetGoogle Scholar
  26. 26.
    Mikula, K., Ševčvič, D.: A direct method for solving an anisotropic mean curvature flow of plane curves with an external force. Math. Methods Appl. Sci. 27, 1545–1565 (2004) CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Niethammer, M., Tannenbaum, A.: Dynamic geodesic snakes for visual tracking. In: CVPR (1), pp. 660–667 (2004) Google Scholar
  28. 28.
    Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surface. Springer, Berlin (2003) CrossRefGoogle Scholar
  29. 29.
    Osher, S., Paragios, N. (eds.): Geometric Level Set Methods in Imaging, Vision and Graphics. Springer, Berlin (2003) MATHGoogle Scholar
  30. 30.
    Osher, S., Sethian, J.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulation. J. Comput. Phys. 79, 12–49 (1988) CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Papadakis, N., Mémin, E.: A variational technique for time consistent tracking of curves and motion. J. Math. Imaging Vis. 31(1), 81–103 (2008) CrossRefGoogle Scholar
  32. 32.
    Paragios, N., Deriche, R.: Geodesic active regions: a new framework to deal with frame partition problems in computer vision. J. Vis. Commun. Image Represent. 13, 249–268 (2002) CrossRefGoogle Scholar
  33. 33.
    Pons, J.-P., Hermosillo, G., Keriven, R., Faugeras, O.: Maintaining the point correspondence in the level set framework. J. Comput. Phys. 220(1), 339–354 (2006) CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Rathi, Y., Vaswani, N., Tannenbaum, A., Yezzi, A.: Tracking deforming objects using particle filtering for geometric active contours. IEEE Trans. Pattern Anal. Mach. Intell. 29(8), 1470–1475 (2007) CrossRefGoogle Scholar
  35. 35.
    Sethian, J.: Level Set Methods. Cambridge University Press, Cambridge (1996) MATHGoogle Scholar
  36. 36.
    Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, vol. 1697, pp. 325–432. Springer, Berlin (1998) CrossRefGoogle Scholar
  37. 37.
    Snyder, C., Bengtsson, T., Bickel, P., Anderson, J.: Obstacles to high-dimensional particle filtering. Mon. Weather Rev. 136(12), 4629–4640 (2008) CrossRefGoogle Scholar
  38. 38.
    Vese, L., Chan, T.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002) CrossRefMATHGoogle Scholar
  39. 39.
    Zhao, H., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. J. Comput. Phys. 127, 179–195 (1996) CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.LIP6UPMC—Université Pierre et Marie CurieParis Cedex 05France
  2. 2.INRIARennes CedexFrance
  3. 3.TechnicolorCesson-Sévigné CedexFrance

Personalised recommendations