Journal of Mathematical Imaging and Vision

, Volume 50, Issue 1–2, pp 53–59 | Cite as

Density Estimators of Gaussian Type on Closed Riemannian Manifolds

  • Jonathan Bates
  • Washington Mio


We prove consistency results for two types of density estimators on a closed, connected Riemannian manifold under suitable regularity conditions. The convergence rates are consistent with those in Euclidean space as well as those obtained for a previously proposed class of kernel density estimators on closed Riemannian manifolds. The first estimator is the uniform mixture of heat kernels centered at each observation, a natural extension of the usual Gaussian estimator to Riemannian manifolds. The second is an approximate heat kernel (AHK) estimator that is motivated by more practical considerations, where observations occur on a manifold isometrically embedded in Euclidean space whose structure or heat kernel may not be completely known. We also provide some numerical evidence that the predicted convergence rate is attained for the AHK estimator.


Density estimation Heat kernel Distributions on Riemannian manifolds 



We thank Misha Belkin for discussions and comments about the paper.


  1. 1.
    Belkin, M., Niyogi, P.: Convergence of Laplacian eigenmaps (preprint) Google Scholar
  2. 2.
    Belkin, M., Niyogi, P.: Towards a theoretical foundation for Laplacian-based manifold methods. J. Comput. Syst. Sci. 74(8), 1289–1308 (2008) CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bérard, P.H.: Spectral Geometry: Direct and Inverse Problems. Lecture Notes in Mathematics. Springer, Berlin (1986) Google Scholar
  4. 4.
    Botev, Z.I., Grotowski, J.F., Kroese, D.P.: Kernel density estimation via diffusion. Ann. Stat. 38, 2916–2957 (2010) CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Chaudhuri, P., Marron, J.S.: Scale space view of curve estimation. Ann. Stat. 28, 408–428 (2000) CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Chung, M.K.: Heat kernel smoothing on unit sphere. In: Proc. IEEE International Symposium on Biomedical Imaging (ISBI), pp. 992–995 (2006) Google Scholar
  7. 7.
    Fischer, N., Lewis, T., Embleton, B.: Statistical Analysis of Spherical Data. Cambridge University Press, Cambridge (1993) Google Scholar
  8. 8.
    Hall, P., Watson, G., Cabrera, J.: Kernel density estimation with spherical data. Biometrika 74, 751–762 (1987) CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Healy, D., Hendriks, H., Kim, P.: Spherical deconvolution. J. Multivar. Anal. 67, 1–22 (1998) CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Healy, D., Kim, P.: An empirical Bayes approach to directional data and efficient computation on the sphere. Ann. Stat. 24, 232–254 (1996) CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Hendriks, H.: Nonparametric estimation of a probability density on a Riemannian manifold using Fourier expansions. Ann. Stat. 18, 832–849 (1990) CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Hendriks, H.: Application of fast spherical Fourier transform to density estimation. J. Multivar. Anal. 84, 209–221 (2003) CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Jorgenson, J., Walling, L. (eds.): The Ubiquitous Heat Kernel, Contemporary Mathematics. Am. Math. Soc., Providence (2003) Google Scholar
  14. 14.
    Lebedev, V.I., Laikov, D.N.: A quadrature formula for the sphere of the 131st algebraic order of accuracy. Dokl. Math. 59(3), 477–481 (1999) Google Scholar
  15. 15.
    Pelletier, B.: Kernel density estimation on Riemannian manifolds. Stat. Probab. Lett. 73(3), 297–304 (2005) CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Rosenberg, S.: The Laplacian on a Riemannian Manifold. Cambridge University Press, Cambridge (1997) CrossRefMATHGoogle Scholar
  17. 17.
    Ross, S.M.: Introduction to Probability Models. Academic Press, San Diego (2010) MATHGoogle Scholar
  18. 18.
    Scott, D.W.: Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley, New York (2009) Google Scholar
  19. 19.
    Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability. Chapman & Hall, London (1986) CrossRefGoogle Scholar
  20. 20.
    van der Vaart, A.: Asymptotic Statistics. Cambridge University Press, Cambridge (1998) CrossRefMATHGoogle Scholar
  21. 21.
    Wand, M.P., Jones, M.C.: Kernel smoothing. In: Monographs on Statistics and Applied Probability, vol. 60. Chapman & Hall, London (1995) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of MathematicsFlorida State UniversityTallahasseeUSA

Personalised recommendations