Advertisement

Journal of Mathematical Imaging and Vision

, Volume 49, Issue 1, pp 251–271 | Cite as

Error Analysis in the Computation of Orthogonal Rotation Invariant Moments

  • Chandan Singh
  • Rahul Upneja
Article

Abstract

Orthogonal rotation invariant moments (ORIMs) are among the best region based shape descriptors. Being orthogonal and complete, they possess minimum information redundancy. The magnitude of moments is invariant to rotation and reflection and with some geometric transformation, they can be made translation and scale invariant. Apart from these characteristics, they are robust to image noise. These characteristics of ORIMs make them suitable for many pattern recognition and image processing applications. Despite these characteristics, the ORIMs suffer from many digitization errors, thus they are incapable of representing subtle details in image, especially at high orders of moments. Among the various errors, the image discretization error, geometric and numerical integration errors are the most prominent ones. This paper investigates the contribution and effects of these errors on the characteristics of ORIMs and performs a comparative analysis of these errors on the accurate computation of the three major ORIMs: Zernike moments (ZMs), Pseudo Zernike moments (PZMs) and orthogonal Fourier-Mellin moments (OFMMs). Detailed experimental analysis reveals some interesting results on the performance of these moments.

Keywords

Orthogonal rotation invariant moments Zernike moments Pseudo Zernike moments Orthogonal Fourier Mellin moments Numerical integration Image reconstruction 

Notes

Acknowledgements

The useful comments and suggestions of the anonymous reviewers to raise the standard of the paper are highly appreciated. The research fellowship awarded to one of the authors (Rahul Upneja) by the Council of Scientific and Industrial Research (C.S.I.R.), Govt. of India, is also highly acknowledged.

References

  1. 1.
    Abu Mostofa, Y.S.: Recognitive aspects of moment invariants. IEEE Trans Pattern Anal Mach Intell 6(6), 698–706 (1984) CrossRefGoogle Scholar
  2. 2.
    Bhatia, A.B., Wolf, E.: On the circle polynomials of Zernike and related orthogonal sets. Proc. Camb. Philol. Soc. 50, 40–48 (1954) CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Ghosal, S., Mehrotra, R.: Edge detection using orthogonal moment based operators. In: Proceedings of the 11th Image, Speech and Signal Analysis (IAPR), International Conference on Pattern Recognition, vol. 3, pp. 413–416 (1992) Google Scholar
  4. 4.
    Ghosal, S., Mehrotra, R.: Segmentation of range images on orthogonal moment based integrated approach. IEEE Trans. Robot. Autom. 9(4), 385–399 (1993) CrossRefGoogle Scholar
  5. 5.
    Haddadnia, J., Ahmadi, M., Raahemifar, K.: An effective feature extraction method for face recognition. In: Proceedings of 2003 International Conference on Image Processing, Spain, vol. 3, pp. 917–920 (2003) Google Scholar
  6. 6.
    Hu, M.K.: Visual pattern recognition by moment invariants. IEEE Trans. Inf. Theory 8, 179–187 (1962) MATHGoogle Scholar
  7. 7.
    Keys, R.G.: Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 29(6), 1153–1160 (1981) CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Kotoulas, L., Andreadis, I.: Accurate calculation of image moments. IEEE Trans. Image Process. 16(8), 2028–2037 (2007) CrossRefMathSciNetGoogle Scholar
  9. 9.
    Liao, S.X., Pawlak, M.: On image analysis by moments. IEEE Trans. Pattern Anal. Mach. Intell. 18, 254–266 (1996) CrossRefGoogle Scholar
  10. 10.
    Liao, S.X., Pawlak, M.: On the accuracy of Zernike moments for image analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(12), 1358–1364 (1998) CrossRefGoogle Scholar
  11. 11.
    Lin, H., Si, J., Abousleman, G.P.: Orthogonal rotation invariant moments for digital image processing. IEEE Trans. Image Process. 17(3), 272–282 (2008) CrossRefMathSciNetGoogle Scholar
  12. 12.
    Pang, Y.H., Andrew, T.B.J., David, N.C.L., Hiew, F.S.: Palmprint verifications with moments. J. WSCG 12, 1–3 (2003) Google Scholar
  13. 13.
    Pawlak, M.: Image Analysis by Moments: Reconstruction and Computational Aspects. Oficyna Wydawnicza Politechniki Wroclawskiej, Wroclaw (2006). Available freely at the site http://www.dbc.wroc.pl/dlibra/docmetadata?id=1432&from=&dirids=1 Google Scholar
  14. 14.
    Ping, Z.L., Sheng, Y.L.: Image description with Chebyshev-Fourier moments. Acta Opt. Sin. 19(9), 1748–1754 (2002) MathSciNetGoogle Scholar
  15. 15.
    Rajaraman, V.: Computer Oriented Numerical Methods, 3rd edn. Prentice Hall of India, New Delhi (2004) Google Scholar
  16. 16.
    Reichenbach, S.E., Geng, F.: Two-dimensional cubic convolution. IEEE Trans. Image Process. 12(8), 857–865 (2003) CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Ren, H., Liu, A., Zou, J., Bai, D., Ping, Z.: Character reconstruction with radial harmonic Fourier moments. In: Proc. of the 4th Int. Conf. on Fuzzy Systems and Knowledge Discovery 2007 (FSKD07), vol. 3, pp. 307–310 (2007) Google Scholar
  18. 18.
    Sheng, Y., Shen, L.: Orthogonal Fourier Mellin moments for invariant pattern recognition. IEEE Trans. J. Opt. Soc. Am. 11(6), 1748–1757 (1994) CrossRefGoogle Scholar
  19. 19.
    Singh, C., Pooja, S., Upneja, R.: On image reconstruction, numerical stability, and invariance of orthogonal radial moments and radial harmonic transforms. Pattern Recognit. Image Anal. 21(4), 663–676 (2011) CrossRefGoogle Scholar
  20. 20.
    Singh, C., Pooja, S.: Improving image retrieval using combined features of hough transform and Zernike moments. Opt. Lasers Eng. 49(12), 1384–1396 (2011) CrossRefGoogle Scholar
  21. 21.
    Singh, C., Upneja, R.: A computational model for enhanced accuracy of radial harmonic Fourier moments. In: World Congress of Engineering, London, U.K., pp. 1189–1194 (2012) Google Scholar
  22. 22.
    Singh, C., Upneja, R.: Accurate computation of orthogonal Fourier Mellin moments. J. Math. Imaging Vis. 44(3), 411–431 (2012) CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Singh, C., Upneja, R.: Error analysis and accurate calculation of rotational moments. Pattern Recognit. Lett. 33, 1614–1622 (2012) CrossRefGoogle Scholar
  24. 24.
    Singh, C., Upneja, R.: Fast and accurate method for high order Zernike moments computation. Appl. Math. Comput. 218, 7759–7773 (2012) CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Singh, C., Walia, E.: Algorithms for fast computation of Zernike moments and their numerical stability. Image Vis. Comput. 29, 251–259 (2011) CrossRefGoogle Scholar
  26. 26.
    Singh, C., Walia, E.: Computation of Zernike moments in improved polar configuration. IET Image Process. 3(4), 217–227 (2009) CrossRefGoogle Scholar
  27. 27.
    Singh, C., Walia, E.: Fast and numerically stable methods for the computation of Zernike moments. Pattern Recognit. 43, 2497–2506 (2010) CrossRefMATHGoogle Scholar
  28. 28.
    Singh, C., Walia, E., Pooja, S., Upneja, R.: Analysis of algorithms for fast computation of pseudo Zernike moments and their numerical stability. Digit. Signal Process. 22(6), 1031–1043 (2012) CrossRefMathSciNetGoogle Scholar
  29. 29.
    Singh, C., Walia, E., Upneja, R.: Accurate calculation of Zernike moments. Inf. Sci. 233(1), 255–275 (2013) CrossRefMathSciNetGoogle Scholar
  30. 30.
    Teague, M.R.: Image analysis via the general theory of moments. J. Opt. Soc. Am. 70(8), 920–930 (1980) CrossRefMathSciNetGoogle Scholar
  31. 31.
    Teh, C.H., Chin, R.T.: On image analysis by the methods of moments. IEEE Trans. Pattern Anal. Mach. Intell. 10(4), 496–513 (1988) CrossRefMATHGoogle Scholar
  32. 32.
    Walia, E., Singh, C., Goyal, A.: On the fast computation of orthogonal Fourier-Mellin moments with improved numerical stability. J. Real-Time Image Process. 7(4), 247–256 (2012) CrossRefGoogle Scholar
  33. 33.
    Wee, C.Y., Paramseran, R.: On the computational aspects of Zernike moments. Image Vis. Comput. 25, 967–980 (2007) CrossRefGoogle Scholar
  34. 34.
    Xin, Y., Liao, S., Pawlak, M.: Circularly orthogonal moments for geometrically robust image watermarking. Pattern Recognit. 40, 3740–3752 (2007) CrossRefMATHGoogle Scholar
  35. 35.
    Xin, Y., Liao, S., Pawlak, M.: Geometrically robust image watermark via pseudo Zernike moments. In: Proceedings of the Canadian Conference on Electrical and Computer Engineering, vol. 2, pp. 939–942 (2004) Google Scholar
  36. 36.
    Xin, Y., Pawlak, M., Liao, S.: Accurate calculation of moments in polar co-ordinates. IEEE Trans. Image Process. 16, 581–587 (2007) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Computer SciencePunjabi UniversityPatialaIndia
  2. 2.Department of MathematicsSri Guru Granth Sahib World UniversityFatehgarh SahibIndia

Personalised recommendations