Advertisement

Journal of Mathematical Imaging and Vision

, Volume 49, Issue 1, pp 202–233 | Cite as

Ordering Partial Partitions for Image Segmentation and Filtering: Merging, Creating and Inflating Blocks

  • Christian Ronse
Article

Abstract

The refinement order on partitions corresponds to the operation of merging blocks in a partition, which is relevant to image segmentation and filtering methods. Its mathematical extension to partial partitions, that we call standard order, involves several operations, not only merging, but also creating new blocks or inflating existing ones, which are equally relevant to image segmentation and filtering techniques. These three operations correspond to three basic partial orders on partial partitions, the merging, inclusion and inflating orders. There are three possible combinations of these three basic orders, one of them is the standard order, the other two are the merging-inflating and inclusion-inflating orders. We study these orders in detail, giving in particular their minimal and maximal elements, covering relations and height functions. We interpret hierarchies of partitions and partial partitions in terms of an adjunction between (partial) partitions (possibly with connected blocks) and scalars. This gives a lattice-theoretical interpretation of edge saliency, hence a typology for the edges in partial partitions. The use of hierarchies in image filtering, in particular with component trees, is also discussed. Finally, we briefly mention further orders on partial partitions that can be useful for image segmentation.

Keywords

Mathematical morphology Image segmentation Connected image filtering Partial partition Connection Order Hierarchy 

References

  1. 1.
    Adams, R., Bischof, L.: Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 641–647 (1994) CrossRefGoogle Scholar
  2. 2.
    Benzécri, J.P.: L’Analyse de Données, I: la Taxinomie. Dunod, Paris (1973) Google Scholar
  3. 3.
    Birkhoff, G.: Lattice Theory, 8th printing, 3rd edn. American Mathematical Society Colloquium Publications, vol. 25. American Mathematical Society, Providence (1995) Google Scholar
  4. 4.
    Blyth, T.: Lattices and Ordered Algebraic Structures. Springer, London (2005) MATHGoogle Scholar
  5. 5.
    Cousty, J., Bertrand, G., Couprie, M., Najman, L.: Collapses and watersheds in pseudomanifolds of arbitrary dimension. J. Math. Imaging Vis. (2013, to appear) Google Scholar
  6. 6.
    Grätzer, G.: General Lattice Theory, 2nd edn. Birkhäuser, Basel (2003) MATHGoogle Scholar
  7. 7.
    Guigues, L., Cocquerez, J.P., Le Men, H.: Scale-sets image analysis. Int. J. Comput. Vis. 68(3), 289–317 (2006) CrossRefGoogle Scholar
  8. 8.
    Janowitz, M., Schweizer, B.: Ordinal and percentile clustering. Math. Soc. Sci. 18, 135–186 (1989) CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Johnson, S.: Hierarchical clustering schemes. Psychometrika 32(3), 241–254 (1967) CrossRefGoogle Scholar
  10. 10.
    Kiran, B.R., Serra, J.: Ground truth energies for hierarchies of segmentations. In: Luengo Hendriks, C.L., Borgefors, G., Strand, R. (eds.) Mathematical Morphology and Its Applications to Signal and Image Processing. Lecture Notes in Computer Science, vol. 7883, pp. 123–134. Springer, Berlin (2013). doi: 10.1007/978-3-642-38294-9_11 CrossRefGoogle Scholar
  11. 11.
    Krasner, M.: Nombres semi-réels et espaces ultramétriques. C. R. Hebd. Séances Acad. Sci. 219, 433–435 (1944) MATHMathSciNetGoogle Scholar
  12. 12.
    Meyer, F., Najman, L.: Segmentation, minimum spanning tree and hierarchies. In: Najman, L., Talbot, H. (eds.) Mathematical Morphology: From Theory to Applications, pp. 229–261. ISTE/Wiley, New York (2010). Chap. 9 Google Scholar
  13. 13.
    Najman, L.: On the equivalence between hierarchical segmentations and ultrametric watersheds. J. Math. Imaging Vis. 40(3), 231–247 (2011). doi: 10.1007/s10851-011-0259-1 CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Trans. Image Process. 15(11), 3531–3539 (2006) CrossRefGoogle Scholar
  15. 15.
    Najman, L., Schmitt, M.: Watershed of a continuous function. Signal Process. 38(1), 99–112 (1994) CrossRefGoogle Scholar
  16. 16.
    Najman, L., Schmitt, M.: Geodesic saliency of watershed contours and hierarchical segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 18(12), 1163–1173 (1996) CrossRefGoogle Scholar
  17. 17.
    Ore, O.: Theory of equivalence relations. Duke Math. J. 9, 573–627 (1942) CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Ore, O.: Chains in partially ordered sets. Bull. Am. Math. Soc. 49, 558–566 (1943) CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Pavlidis, T.: Structural Pattern Recognition. Springer, Berlin (1980) Google Scholar
  20. 20.
    Ronse, C.: A topological characterization of thinning. Theor. Comput. Sci. 43, 31–41 (1986) CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Ronse, C.: Set-theoretical algebraic approaches to connectivity in continuous or digital spaces. J. Math. Imaging Vis. 8(1), 41–58 (1998) CrossRefMathSciNetGoogle Scholar
  22. 22.
    Ronse, C.: Partial partitions, partial connections and connective segmentation. J. Math. Imaging Vis. 32(2), 97–125 (2008). doi: 10.1007/s10851-008-0090-5 CrossRefMathSciNetGoogle Scholar
  23. 23.
    Ronse, C.: Adjunctions on the lattices of partitions and of partial partitions. Appl. Algebra Eng. Commun. Comput. 21(5), 343–396 (2010). doi: 10.1007/s00200-010-0129-x CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Ronse, C.: Idempotent block splitting on partial partitions, I: isotone operators. Order 28(2), 273–306 (2011). doi: 10.1007/s11083-010-9171-3 CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Ronse, C.: Idempotent block splitting on partial partitions, II: non-isotone operators. Order 28(2), 307–339 (2011). doi: 10.1007/s11083-010-9190-0 CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Ronse, C.: Orders on partial partitions and maximal partitioning of sets. In: Soille, P., Ouzounis, G., Pesaresi, M. (eds.) Proceedings of ISMM 2011, the 10th International Symposium on Mathematical Morphology. Lecture Notes in Computer Science, vol. 6671, pp. 49–60. Springer, Berlin (2011) Google Scholar
  27. 27.
    Ronse, C., Serra, J.: Algebraic foundations of morphology. In: Najman, L., Talbot, H. (eds.) Mathematical Morphology: From Theory to Applications, pp. 35–80. ISTE/Wiley, New York (2010). Chap. 2 Google Scholar
  28. 28.
    Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for image and sequence processing. IEEE Trans. Image Process. 7(4), 555–570 (1998) CrossRefGoogle Scholar
  29. 29.
    Salembier, P., Wilkinson, M.H.F.: Connected operators: a review of region-based morphological image processing techniques. IEEE Signal Process. Mag. 26(6), 136–157 (2009) CrossRefGoogle Scholar
  30. 30.
    Serra, J.: Mathematical morphology for Boolean lattices. In: Serra, J. (ed.) Image Analysis and Mathematical Morphology, II: Theoretical Advances, pp. 37–58. Academic Press, London (1988). Chap. 2 Google Scholar
  31. 31.
    Serra, J.: Morphological segmentations of colour images. In: Ronse, C., Najman, L., Decencière, E. (eds.) Mathematical Morphology: 40 Years on. Computational Imaging and Vision, vol. 30, pp. 151–176. Springer, Dordrecht (2005) CrossRefGoogle Scholar
  32. 32.
    Serra, J.: A lattice approach to image segmentation. J. Math. Imaging Vis. 24(1), 83–130 (2006) CrossRefMathSciNetGoogle Scholar
  33. 33.
    Serra, J.: Ordre de la construction et segmentations hiérarchiques. Tech. rep., ESIEE/A2SI/IGM (2010) Google Scholar
  34. 34.
    Serra, J.: Grain buiding ordering. In: Soille, P., Ouzounis, G., Pesaresi, M. (eds.) Proceedings of ISMM 2011, the 10th International Symposium on Mathematical Morphology. Lecture Notes in Computer Science, vol. 6671, pp. 37–48. Springer, Berlin (2011) Google Scholar
  35. 35.
    Serra, J.: Hierarchies and optima. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011, 16th International Conference on Discrete Geometry for Computer Imagery. Lecture Notes in Computer Science, vol. 6607, pp. 35–46. Springer, Berlin (2011) Google Scholar
  36. 36.
    Serra, J., Kiran, B.R.: Optima on hierarchies of partitions. In: Luengo Hendriks, C.L., Borgefors, G., Strand, R. (eds.) Mathematical Morphology and Its Applications to Signal and Image Processing. Lecture Notes in Computer Science, vol. 7883, pp. 147–158. Springer, Berlin (2013). doi: 10.1007/978-3-642-38294-9_13 CrossRefGoogle Scholar
  37. 37.
    Soille, P.: Constrained connectivity for hierarchical image partitioning and simplification. IEEE Trans. Pattern Anal. Mach. Intell. 30(7), 1132–1145 (2008) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.ICubeUniversité de Strasbourg, CNRSIllkirch CedexFrance

Personalised recommendations