Advertisement

Journal of Mathematical Imaging and Vision

, Volume 48, Issue 1, pp 1–12 | Cite as

Ranking Star-Shaped Valued Mappings with Respect to Shape Variability

  • Carlos Carleos
  • María Concepción López-Díaz
  • Miguel López-Díaz
Article

Abstract

The study of shapes is a difficult topic, but it is becoming more and more important as computer vision techniques are already crucial in many research fields. Concretely, the variability of shapes is the basis for many criteria of symptom definition in medical diagnosis. This article introduces a stochastic order to address the variability of star-shaped sets. The main properties of the order are analyzed. An example of an application to hypothesis testing in medical diagnosis is also provided. Namely, we study if there are significant differences between healthy and diseased corneal endothelia with respect to cell shapes by means of ocular images.

Keywords

Star-shaped set Shape variability order Radial function Corneal endothelia cells 

Notes

Acknowledgements

We would like to thank Guillermo Ayala (Universidad de Valencia) and Lucía Martínez-Costa (Hospital Dr. Peset, Servicio de Oftalmología, Valencia) for helping us in obtaining data for application and for suggesting the idea of shape variability stochastic order.

References

  1. 1.
    Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Systems & Control: Foundations & Applications, vol. 2. Birkhäuser, Boston (1990) Google Scholar
  2. 2.
    Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley, New York (1999) CrossRefMATHGoogle Scholar
  3. 3.
    Carleos, C.: R scripts for star-shaped variability. ftp://carleos.epv.uniovi.es/stelforma (2011)
  4. 4.
    Carleos, C., Fernández, D.: Evaluador de formas bidimensionales. http://evafo2d.sf.net (2011)
  5. 5.
    Carleos, C., López-Díaz, M.: A new family of dispersive orderings. Metrika 71, 203–217 (2010) CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Carleos, C., López-Díaz, M.C., López-Díaz, M.: A stochastic order of shape variability with an application to cell nuclei involved in mastitis. J. Math. Imaging Vis. 38, 95–107 (2010) CrossRefGoogle Scholar
  7. 7.
    Davies, R., Twining, C., Taylor, C.: Statistical Models of Shape: Optimization and Evaluation. Springer, New York (2008) Google Scholar
  8. 8.
    Díaz, M., Ayala, G., Quesada, S., Martínez-Costa, L.: Testing abnormality in the spatial arrangement of cells in the corneal endothelium by using spatial point processes. Stat. Med. 20, 3429–3439 (2001) CrossRefGoogle Scholar
  9. 9.
    Domingo, J., Ayala, G., Díaz, M.: Morphometric analysis of human corneal endothelium by means of spatial point patterns. Int. J. Pattern Recognit. Artif. Intell. 16, 127–143 (2002) CrossRefGoogle Scholar
  10. 10.
    Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis. Wiley, Chichester (1998) MATHGoogle Scholar
  11. 11.
    Fernández-Ponce, J.M., Suárez-Lloréns, A.: An aging concept based on majorization. Probab. Eng. Inf. Sci. 17, 107–117 (2003) CrossRefMATHGoogle Scholar
  12. 12.
    Gavet, Y.: Cornea Endothelium Specular. http://en.wikipedia.org/wiki/File:Cornea_endothelium_specular.jpg (2006)
  13. 13.
    Giovagnoli, A., Wynn, H.P.: Multivariate dispersion orderings. Stat. Probab. Lett. 22, 325–332 (1995) CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Klain, D.A.: Invariant valuations on star-shaped sets. Adv. Math. 125, 95–113 (1997) CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Lehmann, E.L.: Nonparametrics: Statistical Methods Based on Ranks, Revised. Prentice-Hall, New York (1998) Google Scholar
  16. 16.
    López-Díaz, M.: Some remarks on L p dispersion orderings. Stat. Probab. Lett. 80, 413–420 (2010) CrossRefMATHGoogle Scholar
  17. 17.
    Müller, A., Stoyan, D.: Comparison Methods for Stochastic Models and Risks. Wiley Series in Probability and Statistics. Wiley, Chichester (2002) MATHGoogle Scholar
  18. 18.
    Pollard, D.: Convergence of Stochastic Processes. Springer Series in Statistics. Springer, New York (1984) CrossRefMATHGoogle Scholar
  19. 19.
    Roberts, A.W., Varberg, D.E.: Convex Functions. Pure and Applied Mathematics, vol. 57. Academic Press, New York (1973) MATHGoogle Scholar
  20. 20.
    Schmid, F., Trede, M.: A distribution free test for the two sample problem for general alternatives. Comput. Stat. Data Anal. 20, 409–419 (1995) CrossRefMATHGoogle Scholar
  21. 21.
    Shaked, M., Shanthikumar, J.G.: Stochastic Orders. Springer, New York (2007) CrossRefMATHGoogle Scholar
  22. 22.
    Slomianka, L.: Blue histologie. http://www.lab.anhb.uwa.edu.au/mb140/Big/thumbs/cor20he.jpg (2009)
  23. 23.
    Small, C.G.: The Statistical Theory of Shape. Springer, New York (1996) CrossRefMATHGoogle Scholar
  24. 24.
    Zapater, V., Martínez-Costa, L., Ayala, G., Domingo, J.: Classifying human corneal endothelial cells based on individual granulometric size distributions. Image Vis. Comput. 20, 783–791 (2002) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Carlos Carleos
    • 1
  • María Concepción López-Díaz
    • 2
  • Miguel López-Díaz
    • 1
  1. 1.Dpto. de Estadística e I.O. y D.M. Facultad de CienciasUniversidad de OviedoOviedoSpain
  2. 2.Dpto. de Matemáticas, Facultad de CienciasUniversidad de OviedoOviedoSpain

Personalised recommendations