Journal of Mathematical Imaging and Vision

, Volume 44, Issue 3, pp 449–462 | Cite as

Implicitly Weighted Methods in Robust Image Analysis



This paper is devoted to highly robust statistical methods with applications to image analysis. The methods of the paper exploit the idea of implicit weighting, which is inspired by the highly robust least weighted squares regression estimator. We use a correlation coefficient based on implicit weighting of individual pixels as a highly robust similarity measure between two images. The reweighted least weighted squares estimator is considered as an alternative regression estimator with a clear interpretation. We apply implicit weighting to dimension reduction by means of robust principal component analysis. Highly robust methods are exploited in tasks of face localization and face detection in a database of 2D images. In this context we investigate a method for outlier detection and a filter for image denoising based on implicit weighting.


Robustness High breakdown point Outlier detection Robust correlation analysis Template matching Face recognition 



This research is fully supported by the project 1M06014 of the Ministry of Education, Youth and Sports of the Czech Republic. The author is grateful to two anonymous referees for providing valuable suggestions.


  1. 1.
    Arya, K.V., Gupta, P., Kalra, P.K., Mitra, P.: Image registration using robust M-estimators. Pattern Recognit. Lett. 28, 1957–1968 (2007) CrossRefGoogle Scholar
  2. 2.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997) CrossRefGoogle Scholar
  3. 3.
    Böhringer, S., Vollmar, T., Tasse, C., Würtz, R.P., Gillessen-Kaesbach, G., Horsthemke, B., Wieczorek, D.: Syndrome identification based on 2D analysis software. Eur. J. Hum. Genet. 14, 1082–1089 (2006) CrossRefGoogle Scholar
  4. 4.
    Chai, X., Shan, S., Chen, X., Gao, W.: Locally linear regression for pose-invariant face recognition. IEEE Trans. Image Process. 16(7), 1716–1725 (2007) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chambers, J.M.: Software for Data Analysis: Programming with R. Springer, New York (2008) MATHCrossRefGoogle Scholar
  6. 6.
    Chen, J.-H., Chen, C.-S., Chen, Y.-S.: Fast algorithm for robust template matching with M-estimators. IEEE Trans. Signal Process. 51(1), 230–243 (2003) MathSciNetCrossRefGoogle Scholar
  7. 7.
    Čížek, P.: Robust estimation with discrete explanatory variables. In: Härdle, W., Rönz, B. (eds.) COMPSTAT 2002, Proceedings in Computational Statistics, pp. 509–514. Physica-Verlag, Heidelberg (2002) Google Scholar
  8. 8.
    Čížek, P.: Semiparametrically weighted robust estimation of regression models. Comput. Stat. Data Anal. 55(1), 774–788 (2011) CrossRefGoogle Scholar
  9. 9.
    Dabov, K., Foi, A., Katkovnik, V., Egizarian, K.: Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition CVPR, pp. 886–893. IEEE Computer Society, Washington (2005) Google Scholar
  11. 11.
    Davies, P.L., Gather, U.: Breakdown and groups. Ann. Stat. 33(3), 977–1035 (2005) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Davies, P.L., Kovac, A.: Local extremes, runs, strings and multiresolution. Ann. Stat. 29(1), 1–65 (2001) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Donoho, D.L., Huber, P.J.: The notion of breakdown point. In: Bickel, P.J., Doksum, K., Hodges, J.L.J. (eds.) A Festschrift for Erich L. Lehmann, pp. 157–184. Wadsworth, Belmont (1983) Google Scholar
  14. 14.
    Ellis, S.P., Morgenthaler, S.: Leverage and breakdown in L1 regression. J. Am. Stat. Assoc. 87(417), 143–148 (1992) MathSciNetMATHGoogle Scholar
  15. 15.
    Fidler, S., Skočaj, D., Leonardis, A.: Combining reconstructive and discriminative subspace methods for robust classification and regression by subsampling. IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 337–350 (2006) CrossRefGoogle Scholar
  16. 16.
    Franceschi, E., Odone, F., Smeraldi, F., Verri, A.: Finding objects with hypothesis testing. In: Proceedings of ICPR 2004, Workshop on Learning for Adaptable Visual Systems, Cambridge, 2004. IEEE Computer Society, Los Alamitos (2004) Google Scholar
  17. 17.
    Fried, R., Einbeck, J., Gather, U.: Weighted repeated median smoothing and filtering. J. Am. Stat. Assoc. 102(480), 1300–1308 (2007) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Gervini, D., Yohai, V.J.: A class of robust and fully efficient regression estimators. Ann. Stat. 30(2), 583–616 (2002) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Hájek, J., Šidák, Z., Sen, P.K.: Theory of Rank Tests, 2nd edn. Academic Press, San Diego (1999) MATHGoogle Scholar
  20. 20.
    Härdle, W.K., Simar, L.: Applied Multivariate Statistical Analysis. Springer, Heidelberg (2007) MATHGoogle Scholar
  21. 21.
    He, X., Portnoy, S.: Reweighted LS estimators converge at the same rate as the initial estimator. Ann. Stat. 20(4), 2161–2167 (1992) MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Hillebrand, M., Müller, C.: Outlier robust corner-preserving methods for reconstructing noisy images. Ann. Stat. 35(1), 132–165 (2007) MATHCrossRefGoogle Scholar
  23. 23.
    Hotz, T., Marnitz, P., Stichtenoth, R., Davies, P.L., Kabluchko, Z., Munk, A.: Locally adaptive image denoising by a statistical multiresolution criterion. Preprint statistical regularization and qualitative constraints 8/2009, University of Göttingen (2009) Google Scholar
  24. 24.
    Huang, L.-L., Shimizu, A.: Combining classifiers for robust face detection. In: Lecture Notes in Computer Science, vol. 3972, pp. 116–121 (2006) Google Scholar
  25. 25.
    Hubert, M., Rousseeuw, P.J., van Aelst, S.: High-breakdown robust multivariate methods. Stat. Sci. 23(1), 92–119 (2008) CrossRefGoogle Scholar
  26. 26.
    Kalina, J.: Asymptotic Durbin-Watson test for robust regression. Bull. Int. Stat. Inst. 62, 3406–3409 (2007) Google Scholar
  27. 27.
    Kalina, J.: Robust image analysis of faces for genetic applications. Eur. J. Biomed. Inform. 6(2), 6–13 (2010) MathSciNetGoogle Scholar
  28. 28.
    Kalina, J.: On multivariate methods in robust econometrics. Prague Econ. Pap. 1(2012), 69–82 (2012) Google Scholar
  29. 29.
    Kleihorst, R.P.: Noise filtering of image sequences. Dissertation, Technical University Delft (1997) Google Scholar
  30. 30.
    Lin, Z., Davis, L.S., Doermann, D.S., DeMenthon, D.: Hierarchical part-template matching for human detection and segmentation. In: Proceedings of the Eleventh IEEE International Conference on Computer Vision ICCV 2007, pp. 1–8. IEEE Computer Society, Washington (2007) CrossRefGoogle Scholar
  31. 31.
    Mairal, J., Elad, M., Sapiro, G.: Sparse representation for color image restoration. IEEE Trans. Image Process. 17(1), 53–69 (2008) MathSciNetCrossRefGoogle Scholar
  32. 32.
    Maronna, R.A., Martin, R.D., Yohai, V.J.: Robust Statistics: Theory and Methods. Wiley, Chichester (2006) MATHCrossRefGoogle Scholar
  33. 33.
    Meer, P., Mintz, D., Rosenfeld, A., Kim, D.Y.: Robust regression methods for computer vision: A review. Int. J. Comput. Vis. 6(1), 59–70 (1991) CrossRefGoogle Scholar
  34. 34.
    Müller, C.: Redescending M-estimators in regression analysis, cluster analysis and image analysis. Discuss. Math., Probab. Stat. 24(1), 59–75 (2004) MathSciNetMATHGoogle Scholar
  35. 35.
    Naseem, I., Togneri, R., Bennamoun, M.: Linear regression for face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(11), 2106–2112 (2010) CrossRefGoogle Scholar
  36. 36.
    Pitas, I., Venetsanopoulos, A.N.: Nonlinear Digital Filters. Kluwer, Dordrecht (1990) MATHGoogle Scholar
  37. 37.
    Plát, P.: The least weighted squares estimator. In: Antoch, J. (ed.) COMPSTAT 2004, Proceedings in Computational Statistics, pp. 1653–1660. Physica-Verlag, Heidelberg (2004) Google Scholar
  38. 38.
    Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Process. 12(11), 1338–1351 (2003) MathSciNetCrossRefGoogle Scholar
  39. 39.
    Rousseeuw, P.J., Leroy, A.M.: Robust Regression and Outlier Detection. Wiley, New York (1987) MATHCrossRefGoogle Scholar
  40. 40.
    Rousseeuw, P.J., van Driessen, K.: Computing LTS regression for large data sets. Data Min. Knowl. Discov. 12(1), 29–45 (2006) MathSciNetCrossRefGoogle Scholar
  41. 41.
    Rowley, H., Baluja, S., Kanade, S.: Neural network-based face detection. IEEE Trans. Pattern Anal. Mach. Intell. 20(1), 23–38 (1998) CrossRefGoogle Scholar
  42. 42.
    Salibián-Barrera, M.: The asymptotics of MM-estimators for linear regression with fixed designs. Metrika 63, 283–294 (2006) MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Schettlinger, K., Fried, R., Gather, U.: Real time signal processing by adaptive repeated median filters. Int. J. Adapt. Control Signal Process. 24(5), 346–362 (2010) MathSciNetMATHGoogle Scholar
  44. 44.
    Shevlyakov, G.L., Vilchevski, N.O.: Robustness in Data Analysis: Criteria and Methods. VSP, Utrecht (2002) Google Scholar
  45. 45.
    Tableman, M.: The influence functions for the least trimmed squares and the least trimmed absolute deviations estimators. Stat. Probab. Lett. 19, 329–337 (1994) MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Torralba, A., Murphy, K.P., Freeman, W.T.: Sharing visual features for multiclass and multiview object detection. IEEE Trans. Pattern Anal. Mach. Intell. 5, 854–869 (2007) CrossRefGoogle Scholar
  47. 47.
    Tuzel, O., Porikli, F., Meer, P.: Human detection via classification on Riemannian manifolds. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition CVPR 2007. IEEE Computer Society, Washington (2007) Google Scholar
  48. 48.
    Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57, 137–154 (2004) CrossRefGoogle Scholar
  49. 49.
    Víšek, J.A.: The least weighted squares II. Consistency and asymptotic normality. Bull. Czech Econom. Soc. 9(16), 1–28 (2002) Google Scholar
  50. 50.
    Víšek, J.A.: Robust error-term-scale estimate. In: Nonparametrics and Robustness in Modern Statistical Inference and Time Series Analysis. Institute of Mathematical Statistics Collections, vol. 7, pp. 254–267 (2010) Google Scholar
  51. 51.
    Víšek, J.A.: Consistency of the least weighted squares under heteroscedasticity. Kybernetika 47(2), 179–206 (2011) MathSciNetMATHGoogle Scholar
  52. 52.
    Wang, M., Lai, C.-H.: A Concise Introduction to Image Processing Using C++. CRC Press, Boca Raton (2008) Google Scholar
  53. 53.
    Wang, X., Tang, X.: Subspace analysis using random mixture models. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition CVPR 2005, pp. 574–580. IEEE Computer Society, Washington (2005) Google Scholar
  54. 54.
    Wong, Y., Sanderson, C., Lovell, B.C.: Regression based non-frontal face synthesis for improved identity verification. In: Jiang, X., Petkov, N. (eds.) Computer Analysis of Images and Patterns, pp. 116–124. Springer, Heidelberg (2010) Google Scholar
  55. 55.
    Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Yi, M.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009) CrossRefGoogle Scholar
  56. 56.
    Yang, M.-H., Kriegman, D.J., Ahuja, N.: Detecting faces in images: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 24(1), 34–58 (2002) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Center of Biomedical InformaticsInstitute of Computer Science of the Academy of Sciences of the Czech RepublicPragueCzech Republic

Personalised recommendations