Statistical Analysis of Cortical Morphometrics Using Pooled Distances Based on Labeled Cortical Distance Maps

  • E. Ceyhan
  • M. Hosakere
  • T. Nishino
  • J. Alexopoulos
  • R. D. Todd
  • K. N. Botteron
  • M. I. Miller
  • J. T. Ratnanather


Neuropsychiatric disorders have been demonstrated to manifest shape differences in cortical structures. Labeled Cortical Distance Mapping (LCDM) is a powerful tool in quantifying such morphometric differences and characterizes the morphometry of the laminar cortical mantle of cortical structures. Specifically, LCDM data are distances of labeled gray matter (GM) voxels with respect to the gray/white matter cortical surface. Volumes and descriptive measures (such as means and variances for each subject) based on LCDM distances provide descriptive summary information on some of the shape characteristics. However, additional morphometrics are contained in the data and their analysis may provide additional clues to underlying differences in cortical characteristics. To use more of this information, we pool (merge) LCDM distances from subjects in the same group. These pooled distances can help detect morphometric differences between groups, but do not provide information about the locations of such differences in the tissue in question. In this article, we check for the influence of the assumption violations on the analysis of pooled LCDM distances. We demonstrate that the classical parametric tests are robust to the non-normality and within sample dependence of LCDM distances and nonparametric tests are robust to within sample dependence of LCDM distances. We specify the types of alternatives for which the tests are more sensitive. We also show that the pooled LCDM distances provide powerful results for group differences in distribution of LCDM distances. As an illustrative example, we use GM in the ventral medial prefrontal cortex (VMPFC) in subjects with major depressive disorder (MDD), subjects at high risk (HR) of MDD, and healthy subjects. Significant morphometric differences were found in VMPFC due to MDD or being at HR. In particular, the analysis indicated that distances in left and right VMPFCs tend to decrease due to MDD or being at HR, possibly as a result of thinning. The methodology can also be applied to other cortical structures.


Computational anatomy Depression Laminar cortical mantle Morphometry Ventral medial prefrontal cortex 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barker, A.R., Priebe, C.E., Miller, M.I., Hosakere, M., Lee, N., Ratnanather, J.T., Wang, L., Gado, M., Morris, J.C., Csernansky, J.C.: Statistical testing on labeled cortical distance maps to identify dementia progression. In: Joint Statistical Meeting, Section on Nonparametric Statistics. American Statistical Association, San Francisco (2003) Google Scholar
  2. 2.
    Botteron, K.N., Raichle, M.E., Drevets, W.C., Heath, A.C., Todd, R.D.: Volumetric reduction in the left subgenual prefrontal cortex in early onset depression. Biol. Psychiatry 51(4), 342–344 (2002) CrossRefGoogle Scholar
  3. 3.
    Bridge, H., Clare, S., Jenkinson, M., Jezzard, P., Parker, A.J., Matthews, P.M.: Independent anatomical and functional measures of the V1/V2 boundary in human visual cortex. J. Vis. 5(2), 93–102 (2005) CrossRefGoogle Scholar
  4. 4.
    Ceyhan, E., Hosakere, M., Nishino, T., Alexopoulos, J., Todd, R.D., Botteron, K.N., Miller, M.I., Ratnanather, J.T.: The use of labeled cortical distance maps for quantization and analysis of anatomical morphometry of brain tissues. Koç University, Istanbul (2008). Technical Report KU-EC-08-2: Available as arXiv:0805.3835v1 [stat.CO]
  5. 5.
    Ceyhan, E., Hosakere, M., Nishino, T., Babb, C., Todd, R.D., Ratnanather, J.T., Botteron, K.N.: Statistical analysis of morphometric measures based on labeled cortical distance maps. In: Fifth International Symposium on Image and Signal Processing and Analysis (ISPA 2007), Istanbul, Turkey (2007) Google Scholar
  6. 6.
    Chenn, A., Walsh, C.A.: Increased neuronal production, enlarged forebrains and cytoarchitectural distortions in beta-catenin overexpressing transgenic mice. Cereb. Cortex 13, 599–606 (2003) CrossRefGoogle Scholar
  7. 7.
    Chung, M.K., Robbins, S.M., Dalton, K.M., Davidson, R.J., Alexander, A.L., Evans, A.C.: Cortical thickness analysis in autism with heat kernel smoothing. NeuroImage 25(4), 1256–1265 (2005) CrossRefGoogle Scholar
  8. 8.
    Conover, W.: Practical Nonparametric Statistics, 3rd edn. Wiley, New York (1999) Google Scholar
  9. 9.
    Czéh, B., Müller-Keuker, J.I., Rygula, R., Abumaria, N., Hiemke, C., Domenici, E., Fuchs, E.: Chronic social stress inhibits cell proliferation in the adult medial prefrontal cortex: hemispheric asymmetry and reversal by fluoxetine treatment. Neuropsychopharmacology 32(7), 1490–1503 (2007) CrossRefGoogle Scholar
  10. 10.
    Drevets, W.C., Price, J.L., Simpson, J.R., Todd, R.D., Reich, T., Vannier, M., Raichle, M.E.: Subgenual prefrontal cortex abnormalities in mood disorders. Nature 386, 824–827 (1997) CrossRefGoogle Scholar
  11. 11.
    Elkis, H., Friedman, L., Buckley, P.F., Lee, H.S., Lys, C., Kaufman, B., Meltzer, H.Y.: Increased prefrontal sulcal prominence in relatively young patients with unipolar major depression. Psychiatry Res. Neuroimaging 67(2), 123–134 (1996) CrossRefGoogle Scholar
  12. 12.
    Joshi, M., Cui, J., Doolittle, K., Joshi, S., Van Essen, D., Wang, L., Miller, M.I.: Brain segmentation and the generation of cortical surfaces. NeuroImage 9(5), 461–476 (1999) CrossRefGoogle Scholar
  13. 13.
    Killgore, W.D., Gruber, S.A., Yurgelun-Todd, D.A.: Depressed mood and lateralized prefrontal activity during a Stroop task in adolescent children. Neurosci. Lett. 416(1), 43–48 (2007) CrossRefGoogle Scholar
  14. 14.
    Makris, N., Biederman, J., Valera, E.M., Bush, G., Kaiser, J., Kennedy, D.N., Caviness, V.S., Faraone, S.V., Seidman, L.J.: Cortical thinning of the attention and executive function networks in adults with attention-deficit/hyperactivity disorder. Cerebral Cortex (2006) Google Scholar
  15. 15.
    Martinussen, M., Fischl, B., Larsson, H.B., Skranes, J., Kulseng, S., Vangberg, T.R., Vik, T., Brubakk, A.M., Haraldseth, O., Dale, A.M.: Cerebral cortex thickness in 15-year-old adolescents with low birth weight measured by an automated MRI-based method. Brain 128(11), 2588–2596 (2005) CrossRefGoogle Scholar
  16. 16.
    Miller, M.I., Hosakere, M., Barker, A.R., Priebe, C.E., Lee, N., Ratnanather, J.T., Wang, L., Gado, M., Morris, J.C., Csernansky, J.G.: Labeled cortical mantle distance maps of the cingulate quantify differences between dementia of the Alzheimer type and healthy aging. Proc. Natl. Acad. Sci. USA 100(25), 15172–15177 (2003) CrossRefGoogle Scholar
  17. 17.
    Miller, M.I., Massie, A.B., Ratnanather, J.T., Botteron, K.N., Csernansky, J.G.: Bayesian construction of geometrically based cortical thickness metrics. NeuroImage 12(6), 676–687 (2000) CrossRefGoogle Scholar
  18. 18.
    Phillips, M.L., Ladouceur, C.D., Drevets, W.C.: A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Mol. Psychiatry (2007) Google Scholar
  19. 19.
    Preul, C., Lohmann, G., Hund-Georgiadis, M., Guthke, T., von Cramon, D.Y.: Morphometry demonstrates loss of cortical thickness in cerebral microangiopathy. J. Neurol. 252(4), 441–447 (2005) CrossRefGoogle Scholar
  20. 20.
    Qiu, A., Vaillant, M., Barta, P., Ratnanather, J.T., Miller, M.I.: Region-of-interest-based analysis with application of cortical thickness variation of left planum temporale in schizophrenia and psychotic bipolar disorder. Hum. Brain Mapp. 29(8), 973–985 (2008) CrossRefGoogle Scholar
  21. 21.
    Qiu, A., Younes, L., Wang, L., Ratnanather, J.T., Gillepsie, S.K., Kaplan, G., Csernansky, J., Miller, M.I.: Combining anatomical manifold information via diffeomorphic metric mappings for studying cortical thinning of the cingulate gyrus in schizophrenia. NeuroImage 37(3), 821–833 (2007) CrossRefGoogle Scholar
  22. 22.
    Ratnanather, J.T., Barta, P.E., Honeycutt, N.A., Lee, N., Morris, H.M., Dziorny, A.C., Hurdal, M.K., Pearlson, G.D., Miller, M.I.: Dynamic programming generation of boundaries of local coordinatized submanifolds in the neocortex: application to the planum temporale. NeuroImage 20(1), 359–377 (2003) CrossRefGoogle Scholar
  23. 23.
    Ratnanather, J.T., Botteron, K.N., Nishino, T., Massie, A.B., Lal, R.M., Patel, S.G., Peddi, S., Todd, R.D., Miller, M.I.: Validating cortical surface analysis of medial prefrontal cortex. NeuroImage 14(5), 1058–1069 (2001) CrossRefGoogle Scholar
  24. 24.
    Ratnanather, J.T., Wang, L., Nebel, M.B., Hosakere, M., Han, X., Csernansky, J.G., Miller, M.I.: Validation of semiautomated methods for quantifying cingulate cortical metrics in schizophrenia. Psychiatry Res. Neuroimaging 132(1), 53–68 (2004) CrossRefGoogle Scholar
  25. 25.
    Thode Jr., H.: Testing for Normality. Marcel Dekker, New York (2002) MATHCrossRefGoogle Scholar
  26. 26.
    Wang, L., Hosakere, M., Trein, J.C., Miller, A., Ratnanather, J.T., Barch, D.M., Thompson, P.A., Qiu, A., Gado, M.H., Miller, M.I., Csernansky, J.G.: Abnormalities of cingulate gyrus neuroanatomy in schizophrenia. Schizophr. Res. 93(1–3), 66–78 (2007) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • E. Ceyhan
    • 1
    • 2
  • M. Hosakere
    • 2
  • T. Nishino
    • 3
    • 4
  • J. Alexopoulos
    • 3
  • R. D. Todd
    • 5
  • K. N. Botteron
    • 3
    • 4
  • M. I. Miller
    • 2
    • 6
    • 7
  • J. T. Ratnanather
    • 2
    • 6
    • 7
  1. 1.Dept. of MathematicsKoç UniversitySarıyerTurkey
  2. 2.Center for Imaging ScienceThe Johns Hopkins UniversityBaltimoreUSA
  3. 3.Dept. of PsychiatryWashington University School of MedicineSt. LouisUSA
  4. 4.Dept. of RadiologyWashington University School of MedicineSt. LouisUSA
  5. 5.Dept. of GeneticsWashington University School of MedicineSt. LouisUSA
  6. 6.Institute for Computational MedicineThe Johns Hopkins UniversityBaltimoreUSA
  7. 7.Dept. of Biomedical EngineeringThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations