Journal of Mathematical Imaging and Vision

, Volume 37, Issue 3, pp 220–231 | Cite as

Computing Color Transforms with Applications to Image Editing



In this paper, we present a unified approach for the problem of computing color transforms, applications of which include shadow removal and object recoloring. We propose two algorithms for transforming colors. In the first algorithm, the detection of source and target regions is performed using a Bayesian classifier. Given these regions, the computed transform alters the color properties of the target region so as to closely resemble those of the source region. The proposed probabilistic formulation leads to a linear program (similar to the classic Transportation Problem), which computes the desired transformation between the target and source distributions. In the second algorithm, the detection and transformation steps are united into a single unified approach; furthermore, the continuity of the transformation arises more intrinsically within this algorithm. Both formulations allow the target region to acquire the properties of the source region, while at the same time retaining its own look and feel. Promising results are shown for a variety of applications.


Color transform Transportation problem Finite elements 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weiss, Y.: Deriving intrinsic images from image sequences. In: Eighth IEEE International Conference on Computer Vision, 2001. ICCV 2001. Proceedings, vol. 2 (2001) Google Scholar
  2. 2.
    Tappen, M.F., Freeman, W.T., Adelson, E.H.: Recovering intrinsic images from a single image. IEEE Trans. Pattern Anal. Mach. Intell. 27(9), 1459–1472 (2005) CrossRefGoogle Scholar
  3. 3.
    Land, E.H., McCann, J.J.: Lightness and retinex theory. J. Opt. Soc. Am. 61(1), 1–11 (1971) CrossRefGoogle Scholar
  4. 4.
    Oh, B.M., Durand, F., Chen, M.: Image-based modeling and photo editing. In: Proc. SIGGRAPH 2001, pp. 433–442. ACM, New York (2001) CrossRefGoogle Scholar
  5. 5.
    Finlayson, G.D., Hordley, S.D., Drew, M.S.: Removing Shadows from Images. Lecture Notes in Computer Science, pp. 823–836 (2002) Google Scholar
  6. 6.
    Finlayson, G.D., Hordley, S.D., Lu, C., Drew, M.S.: On the removal of shadows from images. IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 59–68 (2006) CrossRefGoogle Scholar
  7. 7.
    Chuang, Y.Y., Goldman, D.B., Curless, B., Salesin, D.H., Szeliski, R.: Shadow matting and compositing. ACM Trans. Graph. 22(3), 494–500 (2003) CrossRefGoogle Scholar
  8. 8.
    Shor, Y., Lischinski, D.: The shadow meets the mask: pyramid-based shadow removal. In: Computer Graphics Forum, vol. 27, pp. 577–586. Blackwell, Oxford (2008) Google Scholar
  9. 9.
    Welsh, T., Ashikhmin, M., Mueller, K.: Transferring color to greyscale images. In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 277–280. ACM, New York (2002) CrossRefGoogle Scholar
  10. 10.
    Xiao, X., Ma, L., Kunze, M.: Object-Based Image Recoloring Using Alpha Matte and Color Histogram Specification. Lecture Notes in Computer Science, vol. 4270, p. 194 (2006) Google Scholar
  11. 11.
    Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. ACM Trans. Graph. (TOG) 23(3), 689–694 (2004) CrossRefGoogle Scholar
  12. 12.
    Greenfield, G.R., House, D.H.: Image recoloring induced by palette color associations. J. WSCG 11(1), 189–196 (2003) Google Scholar
  13. 13.
    Reinhard, E., Ashikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Comput. Graph. Appl., 34–41 (2001) Google Scholar
  14. 14.
    Tai, Y.W., Jia, J., Tang, C.K.: Local color transfer via probabilistic segmentation by expectation-maximization. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 1 (2005) Google Scholar
  15. 15.
    Pitie, F., Kokaram, A.C., Dahyot, R.: N-dimensional probability density function transfer and its application to colour transfer. In: ICCV, pp. 1434–1439 (2005) Google Scholar
  16. 16.
    Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. ACM Trans. Graph. 22(3), 313–318 (2003) CrossRefGoogle Scholar
  17. 17.
    Kisilev, P., Freedman, D.: Color transforms for creative image editing. In: Color Imaging Conference. CIC 09 (2009) Google Scholar
  18. 18.
    Hitchcock, F.L.: The distribution of a product from several sources to numerous localities. J. Math. Phys. Mass. Inst. Tech. 20, 224–230 (1941) MATHMathSciNetGoogle Scholar
  19. 19.
    Rachev, S.T.: The Monge–Kantorovich mass transference problem and its stochastic applications. Theory Probab. Appl. 29, 647 (1985) MATHCrossRefGoogle Scholar
  20. 20.
    Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000) MATHCrossRefGoogle Scholar
  21. 21.
    Haker, S., Zhu, L., Tannenbaum, A., Angenent, S.: Optimal mass transport for registration and warping. Int. J. Comput. Vis. 60(3), 225–240 (2004) CrossRefGoogle Scholar
  22. 22.
    Wu, Y., Huang, T.S.: Color tracking by transductive learning. In: IEEE Conference on Computer Vision and Pattern Recognition, 2000. Proceedings, vol. 1 (2000) Google Scholar
  23. 23.
    Girolami, M., He, C.: Probability density estimation from optimally condensed data samples. IEEE Trans. Pattern Anal. Mach. Intell. 1253–1264 (2003) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Hewlett-Packard LaboratoriesHaifaIsrael

Personalised recommendations