Skip to main content
Log in

Vesicles and Amoebae: On Globally Constrained Shape Deformation

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Modeling the deformation of shapes under constraints on both perimeter and area is a challenging task due to the highly nontrivial interaction between the need for flexible local rules for manipulating the boundary and the global constraints. We propose several methods to address this problem and generate “random walks” in the space of shapes obeying quite general possibly time varying constraints on their perimeter and area. Design of perimeter and area preserving deformations are an interesting and useful special case of this problem. The resulting deformation models are employed in annealing processes that evolve original shapes toward shapes that are optimal in terms of boundary bending-energy or other functionals. Furthermore, such models may find applications in the analysis of sequences of real images of deforming objects obeying global constraints as building blocks for registration and tracking algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arreaga, G., Capovilla, R., Chryssomalakos, C., Guven, J.: Area-constrained planar elastica. Phys. Rev. E 65(3), 031801 (2002)

    Article  Google Scholar 

  2. Capovilla, R., Chryssomalakos, C., Guven, J.: Elastica hypoarealis. Eur. Phys. J. B 29, 163–166 (2002)

    Article  MathSciNet  Google Scholar 

  3. Bruckstein, A.M., Netravali, A.N.: On minimal energy trajectories. Comput. Vis. Graph. Image Process. 49(3), 283–296 (1990)

    Article  Google Scholar 

  4. De Boor, C.: A Practical Guide to Splines. Springer, Berlin (1978)

    MATH  Google Scholar 

  5. Do Carmo, M.P.: Differential Geometry of Curves and Surfaces, pp. 33–35. Prentice Hall, New York (1976), Chap. 1

    MATH  Google Scholar 

  6. Elber, G.: Multiresolution curve editing with linear constraints. In: Proceedings of the Sixth ACM Symposium on Solid Modeling and Applications, SMA ’01, pp. 109–119. ACM, New York (2001)

    Chapter  Google Scholar 

  7. Epstein, C.L., Gage, M.: The curve shortening flow. In: Chorin, A., Majda, A. (eds.) Wave Motion: Theory, Modelling, and Computation, pp. 17–59. Springer, Berlin (1987)

    Google Scholar 

  8. Farin, G.E.: NURBS: From Projective Geometry to Practical Use. AK Peters, Natick (1999)

    MATH  Google Scholar 

  9. Gage, M.: On an area preserving evolution equation for plane curves. Contemp. Math. 51, 51–62 (1986)

    MathSciNet  Google Scholar 

  10. Gage, M., Hamilton, R.S.: The heat equation shrinking convex plane curves. Differ. Geom. 23, 69–96 (1986)

    MATH  MathSciNet  Google Scholar 

  11. Grayson, M.A.: The heat equation shrinks embedded plane curves to round points. Differ. Geom. 26, 285–314 (1987)

    MATH  MathSciNet  Google Scholar 

  12. Goldin, I., Delosme, J.-M., Bruckstein, A.M.: Vesicles and amoebae: on globally constrained shape deformation. Tech. Report, Center for Intelligent Systems, Computer Science Dep. Technion, Haifa, Israel (2008)

  13. Han, X., Xu, C., Prince, J.L.: A topology preserving level set method for geometric deformable models. IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 755–768 (2003)

    Article  Google Scholar 

  14. Képès, F.: Secretory compartments as instances of dynamic self-evolving structures. Acta Biotheor. 50(4), 209–221 (2002)

    Article  Google Scholar 

  15. Képès, F., Rambourg, A., Satiat-Jeunemaître, B.: Morphodynamics of the secretory pathway. Int. Rev. Cytol. 242, 55–120 (2005)

    Article  Google Scholar 

  16. Lipowsky, R.: Vesicles and biomembranes. Encycl. Appl. Phys. 23, 199–222 (1998)

    Google Scholar 

  17. Malcolm, M.A.: On the computation of nonlinear spline functions. SIAM J. Numer. Anal. 14(2), 254–282 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  18. Okabe, S.: The motion of an elastic closed curve with constant enclosed area. Var. Probl. Relat. Top. 1405(15), 197–213 (2006)

    Google Scholar 

  19. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sapiro, G., Tannenbaum, A.: Area and length preserving geometric invariant scale-spaces. IEEE Trans. Pattern Anal. Mach. Intell. 17(1), 67–72 (1995)

    Article  Google Scholar 

  21. Sauvage, B., Hahmann, S., Bonneau, G.-P.: Length preserving multiresolution editing of curves. Computing 72(1–2), 161–170 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sauvage, B., Hahmann, S., Bonneau, G.-P.: Area preserving deformation of multiresolution curves. Comput. Aided Geom. Des. 22(4), 349–367 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sauvage, B., Hahmann, S., Bonneau, G.-P.: Length constrained multiresolution deformation for surface wrinkling. In: Proceedings of the IEEE International Conference on Shape Modeling and Applications 2006 (SMI’06). IEEE Comput. Soc., Washington (2006)

    Google Scholar 

  24. Sauvage, B., Hahmann, S., Bonneau, G.-P., Elber, G.: Detail preserving deformation of B-spline surfaces with volume constraint. Comput. Aided Geom. Des. 22, 678–696 (2008)

    Article  MathSciNet  Google Scholar 

  25. Schoenberg, I.J.: Cardinal Spline Interpolation. Society for Industrial and Applied Mathematics, Philadelphia (1973)

    MATH  Google Scholar 

  26. Sethian, J.A.: Level, Set Methods and Fast Marching Methods—Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Cambridge, UK (1999)

  27. Ueda, K.: Signed area of sectors between spline curves and the origin. In: Proceedings of the 1999 International Conference on Information Visualisation, pp. 309–314. IEEE Comput. Soc., Washington (1999)

    Google Scholar 

  28. Weiss, I.: 3D shape representation by contours. Comput. Vis. Graph. Image Process. 41(1), 80–100 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishay Goldin.

Additional information

This research was partially supported by The Center for Complexity Science (CCS) No. 2006-70.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldin, I., Delosme, JM. & Bruckstein, A.M. Vesicles and Amoebae: On Globally Constrained Shape Deformation. J Math Imaging Vis 37, 112–131 (2010). https://doi.org/10.1007/s10851-010-0196-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-010-0196-4

Keywords

Navigation