The Structure of Visual Spaces



The “visual space” of an optical observer situated at a single, fixed viewpoint is necessarily very ambiguous. Although the structure of the “visual field” (the lateral dimensions, i.e., the “image”) is well defined, the “depth” dimension has to be inferred from the image on the basis of “monocular depth cues” such as occlusion, shading, etc. Such cues are in no way “given”, but are guesses on the basis of prior knowledge about the generic structure of the world and the laws of optics. Thus such a guess is like a hallucination that is used to tentatively interpret image structures as depth cues. The guesses are successful if they lead to a coherent interpretation. Such “controlled hallucination” (in psychological terminology) is similar to the “analysis by synthesis” of computer vision. Although highly ambiguous, visual spaces do have geometrical structure. The group of ambiguities left open by the cues (e.g., the well known bas-relief ambiguity in the case of shape from shading) may be interpreted as the group of congruences (proper motions) of the space. The general structure of visual spaces for different visual fields is explored in the paper. Applications include improved viewing systems for optical man-machine interfaces.


Visual space Human perception Isotropic metric Visual field Parallactic optical structure Panoramic vision Projective structure Riemann metrics Ground plane Ambiguity groups Pictorial space Stereopsis 


  1. 1.
    Abbot, E., Flatland, E.: A Romance of Many Dimensions. Buccaneer Books, Cutchogue (1976) (first edition 1884) Google Scholar
  2. 2.
    Adelson, E.H., Bergen, J.R.: The plenoptic function and the elements of early vision. In: Landy, M., Movshon, J.A. (eds.) Computational Models of Visual Processing, pp. 3–20. MIT Press, Cambridge (1991) Google Scholar
  3. 3.
    Ames, A. Jr.: The illusion of depth from single pictures. J. Opt. Soc. Am. 10, 137–148 (1925) Google Scholar
  4. 4.
    Alexander, H.G. (ed.): The Leibniz-Clarke Correspondence. Manchester University Press, Manchester (1956) MATHGoogle Scholar
  5. 5.
    Barre, A., Flocon, A.: La Perspective Curviligne, de l’Espace Visuel à Limage Construite. Flammarion, Paris (1968) Google Scholar
  6. 6.
    Belhumeur, P.N., Kriegman, D.J., Yuille, A.L.: The bas-relief ambiguity. Int. J. Comput. Vis. 35, 33–44 (1999) CrossRefGoogle Scholar
  7. 7.
    Bell, J.L.A.: Primer of Infinitesimal Analysis. Cambridge University Press, Cambridge (1998) MATHGoogle Scholar
  8. 8.
    Berkeley, G.: An essay towards a new theory of vision (1709). In: Theory of Vision and Other Writing by Bishop Berkeley. Dent and Sons, New York (1925) Google Scholar
  9. 9.
    Blank, A.A.: The Luneburg theory of visual space. J. Opt. Soc. Am. 43, 717–727 (1953) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Born, M., Wolf, E.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge University Press, Cambridge (1999) Google Scholar
  11. 11.
    Brentano, F.: Psychology from Empirical Standpoint. Routledge, London (1995) (original 1874) Google Scholar
  12. 12.
    Brown, J.W.: Fundamentals of process neuropsychology. Brain Cogn. 38, 234 (1998) CrossRefGoogle Scholar
  13. 13.
    Carrol, L.: Alice’s Adventures in Wonderland. Macmillan, London (1865) Google Scholar
  14. 14.
    Cayley, A.: Sixth memoir upon the quantics. Philos. Trans. Rcmillan, R. Soc. Lond. 149, 61–70 (1859) CrossRefGoogle Scholar
  15. 15.
    Cornish, V.: Scenery and the Sense of Sight. Cambridge University Press, London (1935) Google Scholar
  16. 16.
    Coxeter, H.S.M.: Introduction to Geometry. Wiley Classics Library Series, New York (1989) Google Scholar
  17. 17.
    Denis, M.: Manifesto of symbolism. Revue Art et Critique (1890) Google Scholar
  18. 18.
    Destombes, M.: Guillaume Postel cartographe. In: AAVV, Guillaume Postel 1581–1981. Actes du Colloque International d’Avranches, pp. 361–371. Guy Trédaniel, Paris (1985) Google Scholar
  19. 19.
    Donders, F.C.: Anomalies of Accommodation and Refraction. New Sydenham Society, London (1864) Google Scholar
  20. 20.
    Dubery, F., Willats, J.: Perspective and Other Drawing Systems. Van Nostrand Reinhold, New York (1983) Google Scholar
  21. 21.
    Duke-Elder, S.: The Eye in Evolution. System of Opthalmology, vol. I. Kimpton, London (1958) Google Scholar
  22. 22.
    Edwards, W., Lindman, H., Savage, L.J.: Bayesian statistical inference for psychological research. Psychol. Rev. 70, 193–242 (1963) CrossRefGoogle Scholar
  23. 23.
    Foley, J.M.: The size-distance relation and intrinsic geometry of visual space: implications for processing. Vis. Res. 12, 323–332 (1972) CrossRefGoogle Scholar
  24. 24.
    Gibson, J.J.: The Perception of the Visual World. Houghton-Mifflin, Boston (1950) Google Scholar
  25. 25.
    Gibson, J.J.: The Senses Considered as Perceptual Systems. Houghton-Mifflin, Boston (1966) Google Scholar
  26. 26.
    Gombridge, E.: Art and Illusion: A Study in the Psychology of Pictorial Representation. Phaedon, London (1969) Google Scholar
  27. 27.
    Graham, C.H.: Vision and Visual Perception. Wiley, New York (1966) Google Scholar
  28. 28.
    Hale, N.C.: Abstraction in Art and Nature. Watson-Guptill, New York (1972) Google Scholar
  29. 29.
    Hauck, G.: Die subjektive Perspektive und die Horizontalen Curvaturen des Dorischen Styls. Wittwer, Stuttgart (1875) Google Scholar
  30. 30.
    von Helmholtz, H.: Die Tatsachen in der Wahrnehmung. Hirschwald, Berlin (1878) Google Scholar
  31. 31.
    von Helmholtz, H.: Handbuch der Physiologischen Optik. Voss, Leipzig (1860) Google Scholar
  32. 32.
    Hess, R.F.: Developmental sensory impairment: amblyopia or tarachopia? Hum. Neurobiol. 1, 17–29 (1982) Google Scholar
  33. 33.
    Hilbert, D., Cohn-Vossen, S.: Geometry and the Imagination. Dover, New York (1944) (Orig. (G.) Anschauliche Geometrie, 1932) Google Scholar
  34. 34.
    Hildebrand, A.: The Problem of Form in Painting and Sculpture (transl. by M. Meyer and R.M. Ogden). Stechert, New York (1945) (First, German edition, Das Problem der Form, 1893) Google Scholar
  35. 35.
    Husserl, E.: Logische Untersuchungen. Zweite Teil: Untersuchungen zur Phaenomenologie und Theorie der Erkenntnis (1901) Google Scholar
  36. 36.
    Jacobs, T.S.: Drawing with an Open Mind. Watson-Guptil, New York (1986) Google Scholar
  37. 37.
    Jäne, B.: Practical Handbook on Image Processing for Scientific and Technical Applications. CRC Press, Boca Raton (2004) Google Scholar
  38. 38.
    Jaynes, E.T.: Prior probabilities. IEEE Trans. Syst. Sci. Cybern. 4, 227–241 (1968) CrossRefGoogle Scholar
  39. 39.
    Kheirandish, E.: The Arabic Version of Euclid’s Optics. Springer, New York (1998) Google Scholar
  40. 40.
    Klein, C.F.: Vergleichende Betrachtungen über neuere geometrische Forschungen. Andreas Deichert, Erlangen (1872) Google Scholar
  41. 41.
    Klein, F.: Über die sogenannte nicht-Euklidische Geometrie. Math. Ann. 6, 112–145 (1871) CrossRefGoogle Scholar
  42. 42.
    Klein, F.: Vorlesungen über nicht-Euklidische Geometrie. Springer, Berlin (1928) MATHGoogle Scholar
  43. 43.
    Koenderink, J.J.: The concept of local sign. In: van Doorn, A.J., van de Grind, W.A., Koenderink, J.J. (eds.) Limits in Perception. VNU Science Press, Utrecht (1984) Google Scholar
  44. 44.
    Koenderink, J.J., van Doorn, A.J.: The generic bilinear calibration-estimation problem. Int. J. Comput. Vis. 23, 217–234 (1997) CrossRefGoogle Scholar
  45. 45.
    Koenderink, J.J., van Doorn, A.J.: Exocentric pointing. In: Harris, L.R., Jenkin, M. (eds.) Vision and Action, pp. 295–313. Cambridge University Press, Cambridge (1998) Google Scholar
  46. 46.
    Koenderink, J.J., van Doorn, A.J., Kappers, A.M.L., Todd, J.T.: Ambiguity and the “mental eye” in pictorial relief. Perception 30, 431–448 (2001) CrossRefGoogle Scholar
  47. 47.
    Koenderink, J.J., van Doorn, A.J., Lappin, J.S.: Direct measurement of the curvature of visual space. Perception 29, 69–79 (2000) CrossRefGoogle Scholar
  48. 48.
    Koenderink, J.J., van Doorn, A.J., Kappers, A.M.L., Todd, J.T.: Pappus in optical space. Percept. Psychophys. 64, 380–391 (2002) Google Scholar
  49. 49.
    Koenderink, J.J., van Doorn, A.J., Lappin, J.S.: Exocentric pointing to opposite targets. Acta Psychol. 112, 71–87 (2003) CrossRefGoogle Scholar
  50. 50.
    Kumler, J.J., Bauer, M.: Fisheye lens designs and their relative performance. Proc. SPIE 4093, 360–369 (2000) CrossRefGoogle Scholar
  51. 51.
    Listing, J.B.: Beitrag zur physiologischen Optik, Göttinger Studien. Vandenhoeck and Ruprecht, Göttingen (1845) Google Scholar
  52. 52.
    Lotze, H.: Mikrokosmos. Ideen zur Naturgeschichte und Geschichte der Menschheit. Versuch einer Anthropologie. Hirzel, Leipzig (1876) Google Scholar
  53. 53.
    Luneburg, R.K.: Mathematical Analysis of Binocular Vision. Princeton University Press, Princeton (1947) MATHGoogle Scholar
  54. 54.
    Luneburg, R.K.: The metric of binocular visual space. J. Opt. Soc. Am. 40, 627–642 (1950) MathSciNetGoogle Scholar
  55. 55.
    Martin, G.: An owl’s eye; schematic optics and visual performance in Strix aluco L. J. Comput. Physiol. 145, 341–349 (1982) CrossRefGoogle Scholar
  56. 56.
    Marr, D.: Vision. Freeman, San Francisco (1982) Google Scholar
  57. 57.
    Mercator, G.: Atlas sive Cosmographicae Meditationes de Fabrica Mundi et Fabricati Figura, Duisburg, 1595. Lessing J. Rosenwald Collection, Library of Congress Google Scholar
  58. 58.
    Naber, G.L.: The Geometry of Minkowski Spacetime. Springer, New York (1992) MATHGoogle Scholar
  59. 59.
    Nicod, J.: La géométric dans le monde sensible. Thèse, University of Paris, Paris (1923) Google Scholar
  60. 60.
    Palmer, S.E.: Vision Science: Photons to Phenomenology. MIT Press, Cambridge (1999) Google Scholar
  61. 61.
    Pasch, M.: Vorlesungen über neuere Geometrie von M. Pasch. Teubner, Leipzig (1912) Google Scholar
  62. 62.
    Pirenne, M.H.: Optics, Painting and Photography. Cambridge University Press, Cambridge (1970) Google Scholar
  63. 63.
    Poggio, T.: Low-level vision as inverse optics. In: Rauk, M. (ed.) Proceedings of Symposium on Computational Models of Hearing and Vision, pp. 123–127. Academy of Sciences of the Estonian S.S.R. (1984) Google Scholar
  64. 64.
    Poincaré, H.: Science et la Méthode. Flammarion, Paris (1908) Google Scholar
  65. 65.
    Riedl, R.: Die Ordnung des Lebendigen. Systembedingungen der Evolution. Paul Parey, Hamburg (1975) Google Scholar
  66. 66.
    Riemann, B.: Ueber die Hypothesen, welche der Geometrie zu Grunde liegen (Aus dem dreizehnten Bande der Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen), 10 June 1854 Google Scholar
  67. 67.
    Sachs, H.: Ebene isotrope Geometrie. Friedrich Vieweg, Braunschweig (1987) MATHGoogle Scholar
  68. 68.
    Sachs, H.: Isotrope Geometrie des Raumes. Friedrich Vieweg, Braunschweig (1990) MATHGoogle Scholar
  69. 69.
    Schlosberg, H.: Stereoscopic depth from single pictures. Am. J. Psychol. 54, 601–605 (1941) CrossRefGoogle Scholar
  70. 70.
    Searle, J.: The Rediscovery of the Mind. MIT Press, Cambridge (1992) Google Scholar
  71. 71.
    Siegel, M., Tobinaga, Y., Akiya, T.: Kinder gentler stereo. IS&T/SPIE’98 1-10 (1998) Google Scholar
  72. 72.
    Spivak, M.: Comprehensive Introduction to Differential Geometry. Publish or Perish, Berkeley (1990) Google Scholar
  73. 73.
    Strubecker, K.: Differentialgeometrie des isotropen Raumes I. Sitzungsber. Akad. Wiss. Wien 150, 1–43 (1941) MathSciNetGoogle Scholar
  74. 74.
    Strubecker, K.: Differentialgeometrie des isotropen Raumes II. Math. Z. 47, 743–777 (1942) CrossRefMathSciNetGoogle Scholar
  75. 75.
    Strubecker, K.: Differentialgeometrie des isotropen Raumes III. Math. Z. 48, 369–427 (1943) CrossRefMathSciNetGoogle Scholar
  76. 76.
    Strubecker, K.: Differentialgeometrie des isotropen Raumes IV. Math. Z. 50, 1–92 (1945) CrossRefMathSciNetGoogle Scholar
  77. 77.
    Swift, J.: Gulliver’s Travels and Other Works. Routledge, London (1906) (orig. 1726) Google Scholar
  78. 78.
    Witgenstein, L.: Tractatus Logico-Philosophicus. Routledge and Kegan Paul, London (1922) (German text with an English translation on regard by C.K. Ogden; with an introduction by Bertrand Russell) Google Scholar
  79. 79.
    Yaglom, I.M.: A Simple Non-Euclidean Geometry and Its Physical Basis: An Elementary Account of Galilean Geometry and the Galilean Principle of Relativity (transl. by A. Shenitzer). Springer, New York (1979) Google Scholar
  80. 80.
    Yaglom, I.M.: Complex Numbers in Geometry (transl. by E. Primrose from 1963 Russian original). Academic Press, New York (1968) Google Scholar
  81. 81.
    Zeiss, C., von Rohr, M.: Linsensystem zum einaugigen Betrachten einer in der Brennebene befindlichen Photographie. Kaiserliches Patentamt Patentschrift Nr. 151312 Klasse 42h. (1904) Google Scholar
  82. 82.
    Zeiss, C., von Rohr, M.: Instrument zum beidäugigen Betrachten von Gemälden. Kaiserliches Patentamt Patentschrift Nr. 194480 Klasse 42h Gruppe 34. (1907) Google Scholar
  83. 83.
    Yuille, A., Kersten, D.: Vision as Bayesian inference: analysis by synthesis? Trends Cogn. Sci. 20, 1–7 (2006). Google Scholar
  84. 84.
    Zucker, S.W.: The emerging paradigm of computational vision. Ann. Rev. Comput. Sci. 2, 69–89 (1987) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.UtrechtNetherlands

Personalised recommendations