The Expressivity of Autosegmental Grammars

Article
  • 3 Downloads

Abstract

This paper extends a notion of local grammars in formal language theory to autosegmental representations, in order to develop a sufficiently expressive yet computationally restrictive theory of well-formedness in natural language tone patterns. More specifically, it shows how to define a class ASL\(^g\) of stringsets using local grammars over autosegmental representations and a mapping g from strings to autosegmental structures. It then defines a particular class ASL\(^{g_T}\) using autosegmental representations specific to tone and compares its expressivity to established formal language grammars that have been successfully applied to other areas of phonology.

Keywords

Formal language theory Graph theory Phonology Autosegmental representations Tone 

References

  1. Applegate, R. B. (1972). Ineseño Chumash grammar. Ph.D. thesis, University of California, Berkeley.Google Scholar
  2. Archangeli, D. (1985). Yokuts harmony: Evidence for coplanar representation in nonlinear phonology. Linguistic Inquiry, 16, 335–372.Google Scholar
  3. Archangeli, D., & Pulleyblank, D. (1994). Grounded phonology. Cambridge: MIT Press.Google Scholar
  4. Bird, S., & Ellison, T. M. (1994). One-level phonology: Autosegmental representations and rules as finite automata. Computational Linguistics, 20, 55–90.Google Scholar
  5. Bird, S., & Klein, E. (1990). Phonological events. Journal of Linguistics, 26, 33–56.CrossRefGoogle Scholar
  6. Büchi, J. R. (1960). Weak second-order arithmetic and finite automata. Zeitschrift für Mathematische Logik und Grundlagen der Mathmatik, 6, 66–92.CrossRefGoogle Scholar
  7. Cassimjee, F., & Kisseberth, C. (1998). Optimal domains theory and Bantu tonology. In C. Kisseberth & L. Hyman (Eds.), Theoretical aspects of Bantu tone (pp. 265–314). Stanford: CSLI.Google Scholar
  8. Chomsky, N. (1956). Three models for the description of language. IRE Transactions on Information Theory, 2, 113–124.CrossRefGoogle Scholar
  9. Chomsky, N., & Halle, M. (1965). Some controversial questions in phonological theory. Journal of Linguistics, 1(2), 97–138.CrossRefGoogle Scholar
  10. Clements, G. N. (1976). Vowel harmony in nonlinear generative phonology: An autosegmental model. Bloomington: Indiana University Linguistics Club Publications.Google Scholar
  11. Clements, G. N. (1977). Neutral vowels in Hungarian vowel harmony: An autosegmental interpretation. NELS, 7, 49–64.Google Scholar
  12. Clements, G. N. (1985). The geometry of phonological features. Phonology Yearbook, 2, 225–252.CrossRefGoogle Scholar
  13. Clements, G . N. (1991). Place of articulation in consonants and vowels: A unified theory. Working Papers of the Cornell Phonetics Laboratory, 5, 77–123.Google Scholar
  14. Cohen, R. S., & Brzozowski, J. A. (1971). Dot-depth of star-free events. Journal of Computer Systems Science, 5, 1–16.CrossRefGoogle Scholar
  15. Coleman, J., & Local, J. (1991). The “no crossing constraint” in autosegmental phonology. Linguistics and Philosophy, 14, 295–338.CrossRefGoogle Scholar
  16. Diestel, R. (2005). Graph theory. New York: Springer.Google Scholar
  17. Donohue, M. (1997). Tone systems in New Guinea. Linguistic Typology, 1, 347–386.CrossRefGoogle Scholar
  18. Engelfriet, J., & Vereijken, J. J. (1997). Context-free graph grammars and concatenation of graphs. Acta Informatica, 34, 773–803.CrossRefGoogle Scholar
  19. Ferreira, R. (2013). Efficiently listing combinatorial patterns in graphs. Ph.D. thesis, Università degli Studi di Pisa.Google Scholar
  20. Fu, J., Heinz, J., & Tanner, H. G. (2011). An algebraic characterization of strictly piecewise languages. In M. Ogihara & J. Tarui (Eds.), Theory and applications of models of computation. Lecture notes in computer science (Vol. 6648, pp. 252–263). Berlin: Springer.CrossRefGoogle Scholar
  21. García, P., Vidal, E., & Oncina, J. (1990). Learning locally testable languages in the strict sense. In Proceedings of the workshop on algorithmic learning theory (pp. 325–338).Google Scholar
  22. Gentner, T. Q., Fenn, K. M., Margoliash, D., & Nusbaum, H. C. (2006). Recursive syntactic pattern learning by songbirds. Nature, 440, 1204–1207.CrossRefGoogle Scholar
  23. Goldsmith, J. (1976). Autosegmental phonology. Ph.D. thesis, Massachussets Institute of Technology.Google Scholar
  24. Graf, T. (2017). The power of locality domains in phonology. Phonology, 34, 385–405.CrossRefGoogle Scholar
  25. Hagberg, L. (2006). The place of pitch-accent in a typology of phonological prominence. Paper presented at BeST Conference, SIL, Mexico. University of Leiden, Ms.Google Scholar
  26. Hammond, M. (1988). On deriving the well-formedness condition. Linguistic Inquiry, 19(2), 319–325.Google Scholar
  27. Haraguchi, S. (1977). The tone pattern of Japanese: An autosegmental theory of tonology. Tokyo: Kaitakusha.Google Scholar
  28. Harary, F., & Read, R. C. (1974). Is the null graph a pointless concept? In R. A. Bari & F. Harary (Eds.), Graphs and combinatronics: Proceedings of the capital conference on grpah theory and combinatronics at the George Washington University. New York: Springer.Google Scholar
  29. Hayes, B. (1995). Metrical stress theory. Chicago: The University of Chicago Press.Google Scholar
  30. Heinz, J. (2009). On the role of locality in learning stress patterns. Phonology, 26, 303–351.CrossRefGoogle Scholar
  31. Heinz, J. (2010a). Learning long-distance phonotactics. Linguistic Inquiry, 41, 623–661.CrossRefGoogle Scholar
  32. Heinz, J. (2010b). String extension learning. In Proceedings of the 48th annual meeting of the association for computational linguistics (pp. 897–906). Association for Computational Linguistics.Google Scholar
  33. Heinz, J., & Idsardi, W. (2011). Sentence and word complexity. Science, 333(6040), 295–297.CrossRefGoogle Scholar
  34. Heinz, J., Rawal, C., & Tanner, H. G. (2011). Tier-based strictly local constraints for phonology. In Proceedings of the 49th annual meeting of the association for computational linguistics, Portland, Oregon, USA (pp. 58–64). Association for Computational Linguistics.Google Scholar
  35. Heinz, J., & Rogers, J. (2010). Estimating strictly piecewise distributions. In Proceedings of the 48th annual meeting of the ACL. Association for Computational Linguistics.Google Scholar
  36. Heinz, J., & Rogers, J. (2013). Learning subregular classes of languages with factored deterministic automata. In A. Kornai, & M. Kuhlmann (Eds.), Proceedings of the 13th meeting on the mathematics of language (MoL 13), Sofia, Bulgaria (pp. 64–71). Association for Computational Linguistics.Google Scholar
  37. Hirayama, T. (1951). Kyuusyuu hoogen Onchoo no Kenkyuu (Studies on the Tone of the Kyushu Dialects). Tokyo: Gakkai no shinshin-sha.Google Scholar
  38. Hostetler, R., & Hostetler, C. (1975). A tentative description of Tinputz phonology. Workpapers in Papua New Guinea Languages, 13, 44–51.Google Scholar
  39. Hyman, L. (2009). How not to do typology: the case of pitch-accent. Language Sciences, 31, 213–238.CrossRefGoogle Scholar
  40. Hyman, L. (2011). Tone: Is it different? In J. A. Goldsmith, J. Riggle, & A. C. L. Yu (Eds.), The Blackwell handbook of phonological theory (pp. 197–238). New York: Wiley-Blackwell.CrossRefGoogle Scholar
  41. Hyman, L. (2014). How autosegmental is phonology? The Linguistic Review, 31, 363–400.CrossRefGoogle Scholar
  42. Hyman, L., & Katamba, F. X. (2010). Tone, syntax and prosodic domains in Luganda. In L. Downing, A. Rialland, J.-M. Beltzung, S. Manus, C. Patin, & K. Riedel (Eds.), Papers from the workshop on bantu relative clauses, volume 53 of ZAS Papers in Linguistics (pp. 69–98). ZAS Berlin.Google Scholar
  43. Igarashi, Y. (2007). Typology of prosodic phrasing in japanese dialects. Paper presented at the ICPhS 2007 Satellite Meeting on Intonational Phonology. Ms., Japan Society for the Promotion of Science/National Institute for Japanese Language and Linguistics.Google Scholar
  44. Jardine, A. (2014). Logic and the generative power of Autosegmental phonology. In J. Kingston, C. Moore-Cantwell, J. Pater, & R. Staubs (Eds.), Supplemental proceedings of the 2013 meeting on phonology (UMass Amherst), Proceedings of the annual meetings on phonology. LSA.Google Scholar
  45. Jardine, A. (2016a). Computationally, tone is different. Phonology, 33, 247–283.CrossRefGoogle Scholar
  46. Jardine, A. (2016b). Locality and non-linear representations in tonal phonology. Ph.D. thesis, University of Delaware.Google Scholar
  47. Jardine, A. (2017a). The local nature of tone-association patterns. Phonology, 34, 385–405.CrossRefGoogle Scholar
  48. Jardine, A. (2017b). On the logical complexity of autosegmental representations. In M. Kanazawa, P. de Groote, & M. Sadrzadeh (Eds.), Proceedings of the 15th meeting on the mathematics of language, London, UK (pp. 22–35). Association for Computational Linguistics.Google Scholar
  49. Jardine, A., & Heinz, J. (2015). A concatenation operation to derive autosegmental graphs. In Proceedings of the 14th meeting on the mathematics of language (MoL 2015), Chicago, USA (pp. 139–151). Association for Computational Linguistics.Google Scholar
  50. Jardine, A., & Heinz, J. (2016a). Markedness constraints are negative: An autosegmental constraint definition language. In Proceedings of CLS 51.Google Scholar
  51. Jardine, A., & Heinz, J. (2016b). Learning tier-based strictly 2-local languages. Transactions of the Association for Computational Linguistics, 4, 87–98.Google Scholar
  52. Jardine, A., & McMullin, K. (2017). Efficient learning of tier-based strictly \(k\)-local languages. In F. Drewes, C. Martín-Vide, & B. Truthe (Eds.), Language and automata theory and applications, 11th international conference, Lecture notes in computer science (pp. 64–76). Springer.Google Scholar
  53. Johnson, C. D. (1972). Formal aspects of phonological description. Berlin: Mouton.Google Scholar
  54. Kager, R. (1995). The metrical theory of word stress. In J. A. Goldsmith (Ed.), The handbook of phonological theory, chapter 10 (pp. 367–402). New York: Blackwell.Google Scholar
  55. Kaplan, R., & Kay, M. (1994). Regular models of phonological rule systems. Computational Linguistics, 20, 331–78.Google Scholar
  56. Kay, M. (1987). Nonconcatenative finite-state morphology. In Proceedings, third meeting of the European chapter of the Association for Computational Linguistics (pp. 2–10).Google Scholar
  57. Kenstowicz, M., & Kisseberth, C. (1990). Chizigula tonology: The word and beyond. In S. Inkelas & D. Zec (Eds.), The phonology-syntax connection (pp. 163–194). Chicago: The University of Chicago Press.Google Scholar
  58. Kisseberth, C. W. (1970). On the functional unity of phonological rules. Linguistic Inquiry, 1(3), 291–306.Google Scholar
  59. Kisseberth, C., & Odden, D. (2003). Tone. In D. Nurse & G. Philippson (Eds.), The Bantu languages. New York: Routledge.Google Scholar
  60. Kleene, S. C. (1956). Representation of events in nerve nets and finite automata. In Automata studies (pp. 3–42). Princeton: Princeton University Press.Google Scholar
  61. Kornai, A. (1991). Formal phonology. Ph.D. thesis, Stanford University.Google Scholar
  62. Kornai, A. (1995). Formal phonology. Abingdon: Garland Publication.Google Scholar
  63. Kubozono, H. (2012). Varieties of pitch accent systems in Japanese. Lingua, 122, 1395–1414.CrossRefGoogle Scholar
  64. Leben, W. R. (1973). Suprasegmental phonology. Ph.D. thesis, Massachussets Institute of Technology.Google Scholar
  65. Leben, W. R. (2006). Rethinking autosegmental phonology. In J. Mugane (Ed.), Selected proceedings of the 35th annual conference on African linguistics (pp. 1–9). Somerville, MA: Cascadilla Proceedings Project.Google Scholar
  66. Lombardi, L. (1999). Positional faithfulness and voicing assimilation in Optimality Theory. NLLT, 17, 267–302.Google Scholar
  67. McCarthy, J. J. (1979). Formal problems in semitic phonology and morphology. Ph.D. thesis, MIT.Google Scholar
  68. McCarthy, J. J. (1985). Formal problems in semitic phonology and morphology. New York: Garland.Google Scholar
  69. McMullin, K., & Hansson, G. O. (2016). Long-distance phonotactics as tier-based strictly 2-local languages. In Proceedings of AMP 2015.Google Scholar
  70. McNaugthon, R. (1974). Algebraic decision procedures for local testability. Mathematical Systems Theory, 8, 60–76.CrossRefGoogle Scholar
  71. McNaughton, R., & Papert, S. (1971). Counter-free automata. Cambridge: MIT Press.Google Scholar
  72. Nevins, A. (2010). Locality in vowel harmony. Number 55 in linguistic inquiry monographs. Cambridge: MIT Press.CrossRefGoogle Scholar
  73. Odden, D. (1986). On the role of the obligatory contour principle in phonological theory. Language, 62(2), 353–383.CrossRefGoogle Scholar
  74. Pulleyblank, D. (1986). Tone in lexical phonology. Dordrecht: D. Reidel.CrossRefGoogle Scholar
  75. Rogers, J. (1997). Strict LT2: Regular \(:\): Local : Recognizable. In C. Retoré (Ed.), Logical aspects of computational linguistics: First international conference, LACL ’96 Nancy, France, September 23–25, 1996 selected papers (pp. 366–385). Berlin: Springer.Google Scholar
  76. Rogers, J., Heinz, J., Bailey, G., Edlefsen, M., Visscher, M., Wellcome, D., et al. (2010). On languages piecewise testable in the strict sense. In C. Ebert, G. Jäger, & J. Michaelis (Eds.), The mathematics of language, volume 6149 of Lecture notes in artifical intelligence (pp. 255–265). Berlin: Springer.Google Scholar
  77. Rogers, J., Heinz, J., Fero, M., Hurst, J., Lambert, D., & Wibel, S. (2013). Cognitive and sub-regular complexity. In Formal grammar, volume 8036 of Lecture notes in computer science (pp. 90–108). Springer.Google Scholar
  78. Rogers, J., & Pullum, G. (2011). Aural pattern recognition experiments and the subregular hierarchy. Journal of Logic, Language and Information, 20, 329–342.CrossRefGoogle Scholar
  79. Sagey, E. (1988). On the ill-formedness of crossing association lines. Linguistic Inquiry, 19, 109–118.Google Scholar
  80. Schūtzenberger, M. (1965). On finite monoids having only trivial subgroups. Information and Control, 8, 190–194.CrossRefGoogle Scholar
  81. Shih, S., & Inkelas, S. (2014). A subsegmental correspondence approach to contour tone (dis)harmony patterns. In J. Kingston, C. Moore-Cantwell, J. Pater, & R. Staubs (Eds.), Proceedings of the 2013 meeting on phonology (UMass Amherst), Proceedings of the annual meetings on phonology. LSA.Google Scholar
  82. Simon, I. (1975). Piecewise testable events. In H. Brakhage (Ed.), Automata theory and formal languages 2nd GI conference Kaiserslautern, May 20–23, 1975. Lecture notes in computer science (Vol. 33, pp. 214–222). Berlin: Springer.Google Scholar
  83. Steriade, D. (1987). Locality conditions and feature geometry. North Eastern Linguistic Society, 18, 595–618.Google Scholar
  84. Strother-Garcia, K. (2017). Imdlawn Tashlhiyt Berber syllabification is quantifier-free. In Proceedings of the first annual meeting of the Society for Computation in Linguistics (Vol. 1, pp. 145–153).Google Scholar
  85. Thomas, W. (1982). Classifying regular events in symbolic logic. Journal of Computer and Systems Sciences, 25, 360–376.CrossRefGoogle Scholar
  86. Uwano, Z. (1989). Nihongo no akusento [Japanese accent]. In M. Sugito (Ed.), Koza Nihongo to Nihongo Kyoiku 2: Nihongo no Onsei On’in [Lectures, Japanese and Japanese Education 2: Japanese Phonetics and Phonology] (pp. 178–205). Tokyo: Meiji Shoin.Google Scholar
  87. van der Hulst, H., & Smith, N. (1986). On neutral vowels. In K. Bogers, H. van der Hulst, & M. Mous (Eds.), The phonological representation of suprasegmentals (pp. 233–281). Dordrecht: Foris Publications.Google Scholar
  88. Walker, R. (2011). Vowel patterns in language. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  89. Wiebe, B. (1992). Modelling autosegmental phonology with multi-tape finite state transducers. Master’s thesis, Simon Fraser University.Google Scholar
  90. Williams, E. S. (1976). Underlying tone in Margi and Igbo. Linguistic Inquiry, 7(3), 463–484.Google Scholar
  91. Yip, M. (2002). Tone. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  92. Yli-Jyrä, A. (2013). On finite-state tonology with autosegmental representations. In Proceedings of the 11th international conference on finite state methods and natural language processing (pp. 90–98). Association for Computational Linguistics.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of LinguisticsRutgers UniversityNew BrunswickUSA

Personalised recommendations