Skip to main content
Log in

Equivalential Structures for Binary and Ternary Syllogistics

  • Published:
Journal of Logic, Language and Information Aims and scope Submit manuscript

Abstract

The aim of this paper is to provide a contribution to the natural logic program which explores logics in natural language. The paper offers two logics called \( \mathcal {R}(\forall ,\exists ) \) and \( \mathcal {G}(\forall ,\exists ) \) for dealing with inference involving simple sentences with transitive verbs and ditransitive verbs and quantified noun phrases in subject and object position. With this purpose, the relational logics (without Boolean connectives) are introduced and a model-theoretic proof of decidability for they are presented. In the present paper we develop algebraic semantics (bounded meet semi-lattice) of the logics using congruence theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Black, M. (1945). A new method of presentation of the theory of the syllogism. The Journal of Philosophy, 42(17), 449–455.

    Article  Google Scholar 

  • Bocharov, V. A. (1986). Boolean algebra and syllogism. Synthese, 66(1), 35–54.

    Article  Google Scholar 

  • Corcoran, J. (1972). Completeness of an ancient logic. Journal of Symbolic Logic, 37, 696–702.

    Article  Google Scholar 

  • D’Alfonso, D. (2012). The square of opposition and generalized quantifiers. In J. Y. Beziau & D. Jacquette (Eds.), Around and beyond the square of opposition. Springer.

  • De Morgan, A. (1847). Formal logic: Or, the calculus of inference, necessary and probable. London: Taylor and Walton.

    Google Scholar 

  • Font, J. M., & Verdu, V. (1991). Algebraic logic for classical conjunction and disjunction. Studia Logica, 50(3–4), 391–419.

    Article  Google Scholar 

  • Ivanov, N., & Vakarelov, D. (2012). A system of relational syllogistic incorporating full Boolean reasoning. Journal of Logic, Language and Information, 21(4), 433–459.

    Article  Google Scholar 

  • Łukasiewicz, J. (1957). Aristotle’s syllogistic from the standpoint of modern formal logic (2nd ed., 222 p). Oxford University Press.

  • MacCaull, W., & Vakarelov, D. (2005). Lattice-based paraconsistent logic. In I. Düntsch & M. Winter (Eds.), Proceedings of RelMiCS 8, the 8th international seminar in relational methods in computer science (pp. 155–162).

  • Moss, L. S. (2008). Completeness theorems for syllogistic fragments. Logics for Linguistic Structures, 29, 143–173.

    Google Scholar 

  • Moss, L. S. (2010). Syllogistic logics with verbs. Journal of Logic and Computation, 20(4), 947–967.

    Article  Google Scholar 

  • Moss, L. (2011). Syllogistic logic with complements. In J. van Benthem, A. Gupta & E. Pacuit (Eds.), Games, norms and reasons. Synthese library (Studies in epistemology, logic, methodology, and philosophy of science) (Vol. 353). Dordrecht: Springer.

  • Orłowska, E., & VaKarelov, D. (2005). Lattice-based modal algebras and modal logics. In Logic, methodology and philosophy of science. Proceedings of the 12th international congress (pp. 147–170).

  • Peirce, C. S. (1880). On the algebra of logic. American Journal of Mathematics, 3(1), 15–57.

    Article  Google Scholar 

  • Pratt-Hartmann, I., & Moss, L. S. (2009). Logics for the relational syllogistic. The Review of Symbolic Logic, 2(04), 647–683.

    Article  Google Scholar 

  • Pratt-Hartmann, I., & Third, A. (2006). More fragments of language. Notre Dame Journal of Formal Logic, 47(2), 151–177.

    Article  Google Scholar 

  • Schroeder, M. J. (2012). Search for syllogistic structure of semantic information. Journal of Applied Non-Classical Logics, 22(1–2), 83–103.

    Article  Google Scholar 

  • Schumann, A. (2006). A lattice for the language of Aristotle’s syllogistic and a lattice for the language of Vasilév’s syllogistic. Logic and Logical Philosophy, 15(1), 17–37.

    Article  Google Scholar 

  • Schumann, A. (2013). On two squares of opposition: The Lesniewskis style formalization of synthetic propositions. Acta Analytica, 28(1), 71–93.

    Article  Google Scholar 

  • Schumann, A., & Akimova, L. (2015). Syllogistic system for the propagation of parasites. The case of Schistosomatidae (Trematoda: Digenea). Studies in Logic, Grammar and Rhetoric, 40(53), 303–319.

    Google Scholar 

  • Sotirov, V. (1999). Arithmetizations of syllogistic a la Leibniz. Journal of Applied Non-Classical Logics, 9(2–3), 387–405.

    Article  Google Scholar 

  • Vakarelov, D. (1977). Lattices related to Post algebras and their applications to some logical systems. Studia Logica, 36(1), 89–107.

    Article  Google Scholar 

  • Van Benthem, J. (1984). Questions about quantifiers. Journal of Symbolic Logic, 49(2), 443–466.

    Article  Google Scholar 

  • Van Benthem, J. F. (1985). Generalized quantifiers in natural language, no. 4. Berlin: Walter de Gruyter.

    Google Scholar 

  • Van Eijck, J. (1985). Generalized quantifiers and traditional logic. In J. van Benthem & A. ter Meulen (Eds.), Generalized quantifiers, theory and applications. Dordrecht: Foris.

    Google Scholar 

  • Van Eijck, J. (2005a). Natural logic for natural language. Logic, language, and computation (pp. 216–230). Berlin: Springer.

    Google Scholar 

  • Van Eijck, J. (2005b). Syllogistics \(=\) monotonicity \( symmetry \) existential import. preprint May.

  • Westerståhl, D. (2005). On the Aristotelian square of opposition. Kapten Mnemos Kolumbarium, en festskrift med anledning av Helge Malmgrens 60-årsdag.

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their helpful comments that greatly contributed to improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selçuk Topal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Topal, S. Equivalential Structures for Binary and Ternary Syllogistics. J of Log Lang and Inf 27, 79–93 (2018). https://doi.org/10.1007/s10849-017-9260-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10849-017-9260-4

Keywords

Navigation