Journal of Logic, Language and Information

, Volume 21, Issue 2, pp 217–236 | Cite as

Probabilities as Ratios of Ranges in Initial-State Spaces

  • Jacob Rosenthal


A proposal for an objective interpretation of probability is introduced and discussed: probabilities as deriving from ranges in suitably structured initial-state spaces. Roughly, the probability of an event on a chance trial is the proportion of initial states that lead to the event in question within the space of all possible initial states associated with this type of experiment, provided that the proportion is approximately the same in any not too small subregion of the space. This I would like to call the “natural-range conception” of probability. Providing a substantial alternative to frequency or propensity accounts of probability in a deterministic setting, it is closely related to the so-called “method of arbitrary functions”. It is explicated, confronted with certain problems, and some ideas how these might be overcome are sketched and discussed.


Deterministic chance Method of arbitrary functions Initial-state space Objective probability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrams, M. (2010). Mechanistic probability. Synthese. published online October 2010 (forthcoming).Google Scholar
  2. Arntzenius F., Hall N. (2003) On what we know about chance. The British Journal for the Philosophy of Science 54: 171–179CrossRefGoogle Scholar
  3. Eagle A. (2004) Twenty-one arguments against propensity analyses of probability. Erkenntnis 60: 371–416CrossRefGoogle Scholar
  4. Engel E. (1992) A road to randomness in physical systems. Springer, BerlinCrossRefGoogle Scholar
  5. Frigg R., Hoefer C. (2010) Determinism and chance from a humean perspective. In: Stadler F. (ed.) The present situation in the philosophy of science. Springer, Dordrecht, pp 351–372CrossRefGoogle Scholar
  6. Glynn L. (2010) Deterministic chance. The British Journal for the Philosophy of Science 61: 51–80CrossRefGoogle Scholar
  7. Hájek A. (1997) Mises Redux’—Redux: Fifteen arguments against finite frequentism. Erkenntnis 45: 209–227Google Scholar
  8. Hájek A. (2007) The reference class problem is your problem too. Synthese 156: 563–585CrossRefGoogle Scholar
  9. Hájek A. (2009) Fifteen arguments against hypothetical frequentism. Erkenntnis 70: 211–235CrossRefGoogle Scholar
  10. Hall N. (1994) Correcting the guide to objective chance. Mind 103: 505–517CrossRefGoogle Scholar
  11. Hoefer C. (2007) The third way on objective probability: A sceptic’s guide to objective chance. Mind 116: 549–596CrossRefGoogle Scholar
  12. Hopf E. (1934) On causality, statistics and probability. Journal of Mathematics and Physics 13: 51–102Google Scholar
  13. Hopf, E. (1936). Über die Bedeutung der willkürlichen Funktionen für die Wahrscheinlichkeitstheorie. Jahresbericht der Deutschen Mathematikervereinigung 46: 179–195Google Scholar
  14. Kneale W. (1949) Probability and induction. Clarendon Press, OxfordGoogle Scholar
  15. Lewis D. (1980) A subjectivist’s guide to objective chance. In: Jeffrey R. (ed.) Studies in inductive logic and probability, Vol. II. University of California Press, Berkeley, pp 263–293Google Scholar
  16. Lewis D. (1986) Postscripts to ‘A Subjectivist’s guide to objective chance. In: Lewis D. (ed.) Philosophical papers, Vol. II. Oxford University Press, New York, pp 114–132Google Scholar
  17. Lewis D. (1994) Humean supervenience debugged. Mind 103: 473–490CrossRefGoogle Scholar
  18. Loewer B. (2001) Determinism and chance. Studies in History and Philosophy of Modern Physics 32: 609–620CrossRefGoogle Scholar
  19. Loewer B. (2004) David Lewis’s humean theory of objective chance. Philosophy of Science 71: 1115–1125CrossRefGoogle Scholar
  20. Mellor H. (1971) The matter of chance. Cambridge University Press, CambridgeGoogle Scholar
  21. Mellor H. (1995) The facts of causation. Routledge, LondonCrossRefGoogle Scholar
  22. Myrvold W. (2011) Deterministic laws and epistemic chances. In: Menahem Y. B., Hemmo M. (eds.) Probability in physics. Springer, New YorkGoogle Scholar
  23. North J. (2010) An empirical approach to symmetry and probability. Studies in History and Philosophy of Modern Physics 41: 27–40CrossRefGoogle Scholar
  24. Poincaré H. (1896) Calcul des Probabilités. Gauthier-Villars, ParisGoogle Scholar
  25. Popper K. (1959) The propensity interpretation of probability. The British Journal for the Philosophy of Science 10: 25–42CrossRefGoogle Scholar
  26. Popper K. (1990) A world of propensities. Thoemmes, BristolGoogle Scholar
  27. Reichenbach H. (1935) Wahrscheinlichkeitslehre. Sijthoff, LeidenGoogle Scholar
  28. Rosenthal J. (2004) Wahrscheinlichkeiten als Tendenzen. Eine Untersuchung objektiver Wahrscheinlich- keitsbegriffe. Mentis, PaderbornGoogle Scholar
  29. Rosenthal J. (2010) The natural-range conception of probability. In: Ernst G., Hüttemann A. (eds.) Time, chance and reduction. philosophical aspects of statistical mechanics. Cambridge University Press, Cambridge, pp 71–91CrossRefGoogle Scholar
  30. Schaffer J. (2007) Deterministic chance?. The British Journal for the Philosophy of Science 58: 113–140CrossRefGoogle Scholar
  31. Strevens M. (2003) Bigger than chaos. Harvard University Press, Cambridge (Mass.)Google Scholar
  32. Strevens M. (2008) Depth. An account of scientific explanation. Harvard University Press, Cambridge (Mass.)Google Scholar
  33. Strevens M. (2011) Probability out of determinism. In: Beisbart C., Hartmann S. (eds.) Probabilities in physics. Oxford University Press, OxfordGoogle Scholar
  34. Suppes P. (2010) The nature of probability. Philosophical Studies 147: 89–102CrossRefGoogle Scholar
  35. Thau M. (1994) Undermining and admissibility. Mind 103: 491–503CrossRefGoogle Scholar
  36. von Kries J. (1886) Die Principien der Wahrscheinlichkeitsrechnung. Mohr Siebeck, TübingenGoogle Scholar
  37. von Mises, R. (1928). Wahrscheinlichkeit, Statistik und Wahrheit. Wien: Springer. 2nd revised English edition: Probability, Statistics and Truth, London: Allen & Unwin (1957).Google Scholar
  38. von Plato J. (1982) Probability and determinism. Philosophy of Science 49: 51–66CrossRefGoogle Scholar
  39. von Plato J. (1983) The method of arbitrary functions. The British Journal for the Philosophy of Science 34: 37–47CrossRefGoogle Scholar
  40. von Plato J. (1994) Creating modern probability. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  41. von Smoluchowski, M. (1918). Über den Begriff des Zufalls und den Ursprung der Wahrscheinlichkeitsgesetze in der Physik. Die Naturwissenschaften, 6: 253–263CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute for PhilosophyUniversity of BonnBonnGermany

Personalised recommendations