Journal of Logic, Language and Information

, Volume 19, Issue 2, pp 229–245 | Cite as

Towards a Type-Theoretical Account of Lexical Semantics



After a quick overview of the field of study known as “Lexical Semantics”, where we advocate the need of accessing additional information besides syntax and Montague-style semantics at the lexical level in order to complete the full analysis of an utterance, we summarize the current formulations of a well-known theory of that field. We then propose and justify our own model of the Generative Lexicon Theory, based upon a variation of classical compositional semantics, and outline its formalization. Additionally, we discuss the theoretical place of informational, knowledge-related data supposed to exist within the lexicon as well as within discourse and other linguistic constructs. The formalization of the structure of natural language utterances around a surface form (phenogrammatics), a deep structure (tectogrammatics) and the meaning thereof as a logical form (semantics) has developed from the original theories of Curry and Montague to form coherent, type-driven models. Most of these new theories rely upon variations of the compositional analysis of the sentence: from pheno to tectogrammatics, and then to semantics. Our contribution to this work aims at giving such a model a means to overcome the problems posed by polysemous lexical units during the semantical analysis of the tectogrammatical form. Building upon an assumed “deep structure”, we formalize parts of Pustejovsky’s Generative Lexicon Theory, linguistically motivated in Pustejovsky (The generative lexicon, MIT Press, Cambridge, MA, 1995), in a pre-processing of the semantics of the sentence. The mechanisms of Lexical Semantics we propose are an additional layer of classical Montague compositional semantics, and, as such, integrate smoothly within such an analysis; we proceed by converting the lexical data to modifiers of the logical form. This treatment of Lexical Semantics furthermore induces us to think that some sort of non-evident background knowledge of the common use of words is necessary to perform a correct semantic analysis of an utterance. This “commonsense metaphysics” would therefore not be strictly confined to pragmatics, as is often assumed.


Montague semantics Lexical semantics Type theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asher N. (2008) A type driven theory of predication with complex types. Fundamenta Informaticae 84(2): 151–183Google Scholar
  2. Asher, N. (2009). A web of words: Lexical meaning in context. (forthcoming book).Google Scholar
  3. Asher, N. & Pustejovsky, J. (2005). Word meaning and commonsense metaphysics. (revised version of the 2000 paper: The Metaphysics of Words in Context).
  4. Blutner, R. (2002). Lexical semantics and pragmatics. In F. Hamm & T. E. Zimmermann (Eds.), Semantics (Vol. 10, pp. 27–58) (Sonderheft). Hamburg: Buske.Google Scholar
  5. Cooper, R. (2007). Copredication, dynamic generalized quantification and lexical innovation by coercion. In Fourth International Workshop on Generative Approaches to the Lexicon. Université de Genève.Google Scholar
  6. Girard, J.-Y. (1971). Une extension de l’interprétation de Gödel à l’analyse et son application: l’élimination des coupures dans l’analyse et la théorie des types. In J. E. Fenstad (Ed.), Proceedings of the Second Scandinavian Logic Symposium, Vol. 63 of Studies in Logic and the Foundations of Mathematics, pp. 63–92, Amsterdam, North Holland.Google Scholar
  7. Girard, J.-Y. (1972). Interprétation fonctionnelle et élimination des coupures de l’arithmétique d’ordre supérieur. Thèse de doctorat d’état, Université Paris 7.Google Scholar
  8. Girard, J.-Y., Taylor, P., & Lafont, Y. (1989). Proofs and types. Number 7 in Cambridge tracts in theoretical computer science. Cambridge University Press.Google Scholar
  9. Gupta, K. M. & Aha, D. M. (2003). Nominal concept representation in sublanguage ontologies. In Second International Workshop on Generative Approaches to the Lexicon, pp. 53–62. Université de Genève.Google Scholar
  10. Gupta, K. M. & Aha, D. W. (2005). Interpreting events using generative sublanguage ontologies. In Third International Workshop on Generative Approaches to the Lexicon, pp. 72–81. Université de Genève.Google Scholar
  11. Jacquey E. (2006) Un cas de polysémie logique: modélisation de noms d’action en français ambigus entre processus et artefact. Traitement Automatique des Langues 47(1): 137–166Google Scholar
  12. Jayez J. (2008) Quel(s) rôle(s) pour les “facettes”?. Langages 172(4): 53–68CrossRefGoogle Scholar
  13. Marlet, R. (2007). When the generative lexicon meets computational semantics. In Fourth International Workshop on Generative Approaches to the Lexicon. Université de Genève.Google Scholar
  14. Mery, B., Bassac, C., & Retoré, C. (2007a). A montagovian generative lexicon. In Formal Grammar. CSLI.Google Scholar
  15. Mery, B., Bassac, C., & Retoré, C. (2007b). A Montague-based model of generative lexical semantics. In R. Muskens (Ed.), New directions in type theoretic grammars. ESSLLI, Foundation of logic, language and information.Google Scholar
  16. Nunberg G. (1995) Transfers of meaning. Journal of semantics 12(2): 109–132CrossRefGoogle Scholar
  17. Pinkal, M. & Kohlhase, M. (2000). Feature logic for dotted types: A formalism for complex word meanings. In Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics (ACL ’00), October 1–8, Hong Kong: Morgan Kaufmann Publishers.Google Scholar
  18. Pustejovsky J. (1995) The generative lexicon. MIT Press, Cambridge, MAGoogle Scholar
  19. Pustejovsky, J. (2005). A survey of dot objects. Author’s weblog.Google Scholar
  20. Saba, W. S. (2007). Compositional semantics grounded in commonsense metaphysics. Presented at the 13 Portuguese Conference on Artificial Intelligence—EPIA 2007.Google Scholar
  21. Searle J. (1979) Expression and meaning: Studies in the theory of speech acts. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Christian Bassac
    • 1
  • Bruno Mery
    • 2
  • Christian Retoré
    • 2
  1. 1.Université de Lyon 2, & CRTT (EA 4162) & INRIA Bordeaux Sud-OuestLyon CedexFrance
  2. 2.INRIA Bordeaux Sud-Ouest, LaBRI (C.N.R.S. & Université de Bordeaux)Talence CedexFrance

Personalised recommendations