Advertisement

Journal of Logic, Language and Information

, Volume 19, Issue 2, pp 137–161 | Cite as

Second-Order Abstract Categorial Grammars as Hyperedge Replacement Grammars

  • Makoto Kanazawa
Article

Abstract

Second-order abstract categorial grammars (de Groote in Association for computational linguistics, 39th annual meeting and 10th conference of the European chapter, proceedings of the conference, pp. 148–155, 2001) and hyperedge replacement grammars (Bauderon and Courcelle in Math Syst Theory 20:83–127, 1987; Habel and Kreowski in STACS 87: 4th Annual symposium on theoretical aspects of computer science. Lecture notes in computer science, vol 247, Springer, Berlin, pp 207–219, 1987) are two natural ways of generalizing “context-free” grammar formalisms for string and tree languages. It is known that the string generating power of both formalisms is equivalent to (non-erasing) multiple context-free grammars (Seki et al. in Theor Comput Sci 88:191–229, 1991) or linear context-free rewriting systems (Weir in Characterizing mildly context-sensitive grammar formalisms, University of Pennsylvania, 1988). In this paper, we give a simple, direct proof of the fact that second-order ACGs are simulated by hyperedge replacement grammars, which implies that the string and tree generating power of the former is included in that of the latter. The normal form for tree-generating hyperedge replacement grammars given by Engelfriet and Maneth (Graph transformation. Lecture notes in computer science, vol 1764. Springer, Berlin, pp 15–29, 2000) can then be used to show that the tree generating power of second-order ACGs is exactly the same as that of hyperedge replacement grammars.

Keywords

Abstract categorial grammar Hyperedge replacement grammar Tree language 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauderon M., Courcelle B. (1987) Graph expressions and graph rewritings. Mathematical Systems Theory 20: 83–127CrossRefGoogle Scholar
  2. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Löding, C. et al. (2007). Tree automata techniques and applications. Available online at http://tata.gforge.inria.fr/.
  3. Courcelle B. (1987) An axiomatic definition of context-free rewriting and its application to NLC graph grammars. Theoretical Computer Science 55: 141–181CrossRefGoogle Scholar
  4. de Groote, P. (2001). Towards abstract categorial grammars. In Association for computational linguistics, 39th annual meeting and 10th conference of the European chapter, proceedings of the conference (pp. 148–155).Google Scholar
  5. de Groote P., Pogodalla S. (2004) On the expressive power of abstract categorial grammars: Representing context-free formalisms. Journal of Logic, Language and Information 13: 421–438CrossRefGoogle Scholar
  6. Drewes F., Kreowski H.-J., Habel A. (1997) Hyperedge replacement graph grammars. In: Rozenberg G. (eds) Handbook of graph grammars and computing by graph transformation. World Scientific, Singapore, pp 95–162Google Scholar
  7. Engelfriet J. (1997) Context-free graph grammars. In: Rozenberg G., Salomaa A. (eds) Handbook of formal languages, Volume 3: Beyond words. Springer, Berlin, pp 125–213Google Scholar
  8. Engelfriet J., Heyker L. (1991) The string generating power of context-free hypergraph grammars. Journal of Computer and System Sciences 43: 328–360CrossRefGoogle Scholar
  9. Engelfriet J., Maneth S. (2000) Tree languages generated by context-free graph grammars. In: Ehrig H. (eds) Graph Transformation. Lecture Notes in Computer Science, Vol. 1764. Springer, Berlin, pp 15–29Google Scholar
  10. Engelfriet J., Schmidt E. M. (1977) IO and OI, Part I. The Journal of Computer and System Sciences 15: 328–353CrossRefGoogle Scholar
  11. Gécseg F., Steinby M. (1997) Tree languages. In: Rozenberg G., Salomaa A. (eds) Handbook of formal languages, Volume 3: Beyond words. Springer, Berlin, pp 1–68Google Scholar
  12. Habel A. (1992) Hyperedge replacement: Grammars and languages. Springer, BerlinGoogle Scholar
  13. Habel, A., & Kreowski, H.-J. (1987). Some structural aspects of hypergraph languages generated by hyperedge replacement. In G. Goos & J. Hartmanis (Eds.), STACS 87: 4th Annual symposium on theoretical aspects of computer science. Lecture notes in computer science (Vol. 247, pp. 207–219). Berlin: Springer.Google Scholar
  14. Hindley J. R. (1997) Basic simple type theory. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  15. Kanazawa, M. (2006). Abstract families of abstract categorial languages. In G. Mints and R. de Queiroz (Eds.), Proceedings of the 13th workshop on logic, language, information and computation (WoLLIC 2006). Electronic Notes in Theoretical Computer Science, 165, 65–80.Google Scholar
  16. Kanazawa, M. (2007). Parsing and generation as Datalog queries. In Proceedings of the 45th annual meeting of the association for computational linguistics (pp. 176–183).Google Scholar
  17. Kepser S., Mönnich U. (2006) Closure properties of linear context-free tree languages with an application to optimality theory. Theoretical Computer Science 354: 82–97CrossRefGoogle Scholar
  18. Lautemann C. (1990) The complexity of graph languages generated by hyperedge replacement. Acta Informatica 27: 399–421CrossRefGoogle Scholar
  19. Mints G. (2000) A short introduction to intuitionistic logic. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  20. Raoult J. C. (1997) Rational tree relations. Bulletin of the Belgian Mathematical Society 4: 149–176Google Scholar
  21. Rounds W. C. (1970) Mappings and grammars on trees. Mathematical Systems Theory 4: 257–287CrossRefGoogle Scholar
  22. Salvati, S. (2005). Problèmes de Filtrage et Problèmes d’analyse pour les Grammaires Catégorielles Abstraites. Doctoral thesis, Institut National Polytechnique de Lorraine.Google Scholar
  23. Salvati S. (2007) Encoding second order string ACG with deterministic tree walking transducers. In: Wintner S. (eds) Proceedings of FG 2006: The 11th conference on Formal Grammar, FG Online Proceedings. CSLI Publications, Stanford, CA, pp 143–156Google Scholar
  24. Seki H., Matsumura T., Fujii M., Kasami T. (1991) On multiple context-free grammars. Theoretical Computer Science 88: 191–229CrossRefGoogle Scholar
  25. Sørensen M. H., Urzyczyn P. (2006) Lectures on the Curry-Howard isomorphism. Elsevier, AmsterdamGoogle Scholar
  26. Weir, D. J. (1988). Characterizing mildly context-sensitive grammar formalisms. Ph.D. dissertation, University of Pennsylvania.Google Scholar
  27. Weir, D. (1992). Linear context-free rewriting systems and deterministic tree-walking transducers. In Proceedings of the 30th annual meeting of the association for computational linguistics (pp. 136–143).Google Scholar
  28. Yoshinaka, R., & Kanazawa, M. (2005). The complexity and generative capacity of lexicalized abstract categorial grammars. In P. Blache, E. Stabler, J. Busquets, & R. Moot (Eds.), Logical aspects of computational linguistics: 5th international conference, LACL 2005. Lecture Notes in Computer Science (Vol. 3492, pp. 330–346). Berlin: Springer.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.National Institute of InformaticsChiyoda-ku, TokyoJapan

Personalised recommendations