Journal of Logic, Language and Information

, Volume 16, Issue 3, pp 303–323 | Cite as

From word to sentence: a pregroup analysis of the object pronoun who(m)

  • J. Lambek


We explore a computational algebraic approach to grammar via pregroups, that is, partially ordered monoids in which each element has both a left and a right adjoint. Grammatical judgements are formed with the help of calculations on types. These are elements of the free pregroup generated by a partially ordered set of basic types, which are assigned to words, here of English. We concentrate on the object pronoun who(m).


Computational algebraic grammar via pregroups 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bargelli D., Lambek J. (2001). An algebraic approach to French sentence structure. In: de Groote P. et al. (eds). Logical aspects of computational linguistics. Springer LNAI 2099, Berlin Heidelberg New york, pp. 62–78Google Scholar
  2. Buszkowski W. (2001). Lambek grammars based on pregroups. In: de Groote P. et al. (eds). Logical aspects of computational linguistics. Springer LNAI 2099, Berlin Heidelberg New york, pp. 95–109Google Scholar
  3. Buszkowski W. (2002). Cut elimination for Lambek calculus of adjoints. In: Abrusci V.M. et al. (eds). New perspectives in logic and formal linguistics, proceedings of the 5th Roma Workshop. Bulzoni Editore, Rome, pp. 85–93Google Scholar
  4. Casadio C. (2001). Non-commutative linear logic in linguistics. Grammars 4/3, 1–19Google Scholar
  5. Casadio C. (2002) Logic for grammar. Bulzoni Editore, RomeGoogle Scholar
  6. Casadio C., Lambek J. (2002). A tale of four grammars. Studia Logica 71, 315–329CrossRefGoogle Scholar
  7. Chomsky N. (1957). Syntactic structures. Mouton, The HagueGoogle Scholar
  8. Chomsky N. (1981). Lectures on government and binding. Foris Publications, DordrechtGoogle Scholar
  9. Chomsky N. (1986). Barriers. MIT, Cambridge MAGoogle Scholar
  10. Chomsky N. (1995). The minimalist program. MIT, Cambridge, MAGoogle Scholar
  11. Dexter C. (1994). The second Inspector Morse omnibus. Pan Books, LondonGoogle Scholar
  12. Gazdar G. (1981). Unbounded dependencies and coordinate structure. Linguistic Inquiry 12, 155–184Google Scholar
  13. Gazdar G., Klein E., Pullam G., Sag I. (1985). Generalized phrase structure grammar. Harvard University Press, Cambridge, MAGoogle Scholar
  14. Harris Z. (1966). A cyclic cancellation-automaton for sentence well-formedness. International Computation Centre Bulletin 5, 69–94Google Scholar
  15. Harris Z. (1968). Mathematical structure of language. Interscience Publishers, New YorkGoogle Scholar
  16. Kleene S.C. (1952). Introduction to metamathematics. Van Nostrand, New YorkGoogle Scholar
  17. Lambek J. (1958). The mathematics of sentence structure. American Mathematical Monthly 65, 154–169CrossRefGoogle Scholar
  18. Lambek J. (1999). Type grammar revisited. In: Lamarche F. et al. (eds). Logical aspects of computational linguistics. Springer LNAI 1582, Berlin Heidelberg New york, pp. 1–27Google Scholar
  19. Lambek, J. (2000). Pregroups: A new algebraic approach to sentence structure. In C. Martin-Vide, & G. Pǎun (Eds.), Recent topics in mathematical and computational linguistics. Bucharest: Editura Academici Române.Google Scholar
  20. Lambek J. (2001). Type grammars as pregroups. Grammars 4, 21–39CrossRefGoogle Scholar
  21. Lambek J. (2004). A computational algebraic approach to English grammar. Syntax 7(2): 128–147CrossRefGoogle Scholar
  22. Lambek, J. Invisible endings of English adjectives and nouns. Linguistic Analysis, to appear in 2007.Google Scholar
  23. Lambek, J. (2004). Should pregroup grammars be adorned with additional operations? LIRMM, Rapport de recherche 12949.Google Scholar
  24. McCawley J.D. (1988). The syntactic phenomena of English. The University of Chicago Press, ChicagoGoogle Scholar
  25. Moortgat M. (1977). Categorial type logics. In: van Benthem J., ter Meulen A. (eds). Handbook of logic and language. Elsevier, Amsterdam, pp. 93–177Google Scholar
  26. Peirce C.S. (1897). The logic of relatives. The Monist 7, 161–217Google Scholar
  27. Pinker S. (1994). The language instinct. William Morrow and Company, New YorkGoogle Scholar
  28. Preller, A. (2004). Pregroups meet constraints on transformations. Manuscript IRMM Montpellier.Google Scholar

Copyright information

© Springer Science+Business Media 2007

Authors and Affiliations

  1. 1.McGill UniversityMontrealCanada

Personalised recommendations