Journal of Logic, Language and Information

, Volume 16, Issue 1, pp 1–13 | Cite as

Symmetric and contrapositional quantifiers

  • R. Zuber
Original Article


The article studies two related issues. First, it introduces the notion of the contraposition of quantifiers which is a “dual” notion of symmetry and has similar relations to co-intersectivity as symmetry has to intersectivity. Second, it shows how symmetry and contraposition can be generalised to higher order type quantifiers, while preserving their relations with other notions from generalized quantifiers theory.


Contaposition of quantifiers Symmetry of higher order quantifiers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barwise J., Cooper R. (1981). Generalized quantifiers and natural language. Linguistics and Philosophy 4, 159-219CrossRefGoogle Scholar
  2. Beghelli, F. (1992). Comparative quantifiers. In P. Dekker & M. Stokhof (Eds.), Proc. of the VIII Amsterdam Colloquium Google Scholar
  3. Beghelli, F. (1994). Structured quantifiers. In M. Kanazawa & Ch. Piñon (Eds.), Dynamics, polarity, and quantification (pp. 119–145). CSLI PublicationsGoogle Scholar
  4. Keenan E. L. (1987). Multiply-headed NPs. Linguistic Inquiry 18, 481-491Google Scholar
  5. Keenan E. L. (1993). Natural language, sortal reducibility and generalised quantifiers. Journal of Symbolic Logic 58(1): 314-325CrossRefGoogle Scholar
  6. Keenan E. L. (2002). Some properties of natural language quantifiers: Generalized quantifier theory. Linguistics and Philosophy 25(5–6): 627-654CrossRefGoogle Scholar
  7. Keenan E. L. (2003). The definiteness effect: semantics or pragmatics. Natural Language Semantics 3(2): 187-216CrossRefGoogle Scholar
  8. Keenan E. L., Faltz L. M. (1985). Boolean semantics for natural language. D. Reidel Publishing Company, DordrechtGoogle Scholar
  9. Keenan E.L., Moss L. (1985). Generalized quantifiers and the expressive power of natural language. In: van Benthem J., ter Meulen A. (eds) Generalized quantifiers. Foris, Dordrecht, pp 73-124Google Scholar
  10. Keenan E. L., Stavi J. (1986). A semantic characterisation of natural language determiners. Linguistics and Philosophy 9, 253-326CrossRefGoogle Scholar
  11. Keenan, E. L., & Westerstahl, D. (1997). Generalized quantifiers in linguistics and logic. In J. van Benthem & A. ter Meulen (Eds.), Handbook of logic and language (pp. 837–893). ElsevierGoogle Scholar
  12. Mostowski A. (1957). On a generalisation of quantifiers. Fundamenta Mathematicae 44, 12-36Google Scholar
  13. van Benthem, J. (1986). Essays in logical semantics, D. Reidel Publishing CompanyGoogle Scholar
  14. Zuber, R. (1998). On the semantics of exclusion and inclusion phrases. In A. Lawson (Ed.), SALT8 (pp. 267–283). Cornell University PressGoogle Scholar
  15. Zuber, R. (2004). Some remarks on syncategorematicity. In L. Hunyadi, et al.: (Eds), The eight symposium on logic and language: Preliminary papers (pp. 165–174). Debrecen 2004Google Scholar
  16. Zuber, R. (2005). More algebras for determiners. In P. Blache, & E. Stabler (Eds), Logical aspects of coputational linguistics 5, LNAI (Vol. 3492, pp. 363–378). Springer-VerlagGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Laboratoire de Linguistique FormelleCNRS and Universite Paris 7ParisFrance

Personalised recommendations