Filling the equatorial garland of uranyl ion: its content and limitations

Abstract

Crystal structure determinations on the uranyl ion complexes [H2N(CH3)2]2[UO2(bpdc)2], (1), (bpdc = 2,2′-bipyridine-3,3′-dicarboxylate), [pyH]2[UO2(btfac)(NO3)2](NO3), (2), (btfac = 1-phenyl-4,4,4-trifluorobutane-1,3-dionate), [H2dabco][UO2(nta)]2·3H2O, (3), (dabco = 1,4-diazabicyclo[2.2.2]octane; nta = nitrilotriacetate) and [Ni(cyclam)UO2(edta)].2H2O, (4), (cyclam = 1,4,8,11-tetrazacyclotetradecane; edta = ethylenediaminetetraacetate) have provided further examples of U(VI) in tetragonal-, pentagonal and hexagonal-bipyramidal coordination environments. Consideration of each structure within the context of those of known relatives has been used to assess the influence of factors in addition to repulsions within the primary coordination sphere on the equatorial coordination number of U(VI).

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. 1.

    Kepp, K.P.: A quantitative scale of oxophilicity and thiophilicity. Inorg. Chem. 55, 9461–9470 (2016)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Cotton, S.A.: Lanthanide and Actinide Chemistry, Ch. 11. Wiley, New York. ISBN: 978-0-470-01005-1 (2006)

  3. 3.

    Rudel, S.S., Deubner, H.L., Müller, M., Karttunen, A.J., Kraus, F.: Complexes featuring a linear [N≡U≡N] core isoelectronic to the uranyl cation. Nat. Chem. 12, 962–967 (2020)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Fortier, S., Hayton, T.W.: Oxo Ligand functionalisation in the uranyl ion (UO22+). Coord. Chem. Rev. 254, 197–214 (2010)

    CAS  Article  Google Scholar 

  5. 5.

    Leciejiewicz, J., Alcock, N.W., Kemp, T.J.: Carboxylato complexes of the uranyl ion: effects of ligand size and coordination geometry upon molecular and crystal structure. Struct. Bond. 82, 43–84 (1995)

    Article  Google Scholar 

  6. 6.

    Loiseau, T., Mihalcea, I., Henry, N., Volkringer, C.: The crystal chemistry of uranium carboxylates. Coord. Chem. Rev. 266–267, 69–109 (2014)

    Article  CAS  Google Scholar 

  7. 7.

    Harrowfield, J., Thuéry, P.: Uranyl ion complexes of polycarboxylates: steps towards isolated photoactive cavities. Chemistry 2, 63–79 (2020)

    Article  Google Scholar 

  8. 8.

    Thuéry, P., Nierlich, M., Masci, B., Asfari, Z., Vicens, J.: An unprecedented trigonal coordination geometry for the uranyl ion in its complex with p-tert-butylhexahomotrioxacalix[3]arene. J. Chem. Soc. Dalton Trans. 3151–3152 (1999)

  9. 9.

    Masci, B., Nierlich, M., Thuéry, P.: Supramolecular assemblies from uranyl ion complexes of hexahomotrioxacalix[3]arenes and protonated [2.2.2] cryptand. New J. Chem. 26, 766–774 (2002)

    CAS  Article  Google Scholar 

  10. 10.

    Burns, C.J., Clark, D.L., Donohoe, R.J., Duval, P.B., Scott, B.L., Tait, C.D.: A trigonal bipyramidal uranyl amido complex: synthesis and structural characterization of [Na(THF)2][UO2(N(SiMe3)2)3]. Inorg. Chem. 39, 5464–5468 (2000)

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Zachariasen, W.H., Plettinger, H.A.: Crystal chemical studies of the 5f-series of elements. XXV. The crystal structure of sodium uranyl acetate. Acta Cryst. 12, 526–530 (1959)

    CAS  Article  Google Scholar 

  12. 12.

    Deshayes, L., Keller, N., Lance, M., Nierlich, M., Vigner, J.-D.: Pentaaquadioxouranium(VI) triflate-18-crown-6. Acta Cryst. 50, 1541–1544 (1994)

    Google Scholar 

  13. 13.

    Fischer, A.: Competitive coordination of the uranyl ion by perchlorate and water–the crystal structures of UO2(ClO4)2·3H2O and UO2(ClO4)2·5H2O and a redetermination of UO2(ClO4)2·7H2O. Z. Anorg. Allg. Chem. 629, 1012–1016 (2003)

    CAS  Article  Google Scholar 

  14. 14.

    Deshayes, L., Keller, N., Lance, M., Navaza, A., Nierlich, M., Vigner, J.: EXAFS analysis of aqueous and acetonitrile solutions of UO2-triflate with crown ethers and Aza-crowns crystal structures of the inclusion complexes UO2(18-crown-6)(CF3SO3)2 and UO2(dicyclohexyl-18-crown-6)(CF3SO3)2. Polyhedron 13, 4725–4733 (1994)

    Article  Google Scholar 

  15. 15.

    Wahlgren, U., Moll, H., Grenthe, I., Schimmelpfennig, B., Maron, L., Valet, V., Gropen, O.: Structure of uranium(VI) in strong alkaline solutions. A combined theoretical and experimental investigation. J. Phys. Chem. A 103, 8257–8264 (1999)

    CAS  Article  Google Scholar 

  16. 16.

    Buhl, M., Kabrede, H.: Mechanism of water exchange in aqueous uranyl(VI) ion. A density functional molecular dynamics study. Inorg. Chem. 45, 3834–3836 (2006)

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  17. 17.

    Parker, T.G., Cross, J.N., Polinski, M.J., Lin, J., Albrecht-Schmitt, T.E.: Ionothermal and hydrothermal flux syntheses of five new uranyl phosphonates. Cryst. Growth Des. 14, 228–235 (2014)

    CAS  Article  Google Scholar 

  18. 18.

    Berthet, J.-C., Nierlich, M., Ephritikhine, M.: A novel coordination geometry for the uranyl ion rhombohedral uranium environment in [UO2(OTf)2(bpy)2] and [UO2(phen)3][OTf]2. Chem. Commun. 1660–1661 (2003).

  19. 19.

    Sarsfield, M.J., Helliwell, M., Raftery, J.: Distorted equatorial coordination environments and weakening of U=O bonds in uranyl complexes containing NCN and NPN ligands. Inorg. Chem. 43, 3170–3179 (2004)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Thuéry, P., Harrowfield, J.: [Ni(cyclam)]2+ and [Ni(R, S-Me6cyclam)]2+ as linkers or counterions in uranyl-organic species with cis- and trans-1,2-cyclohexanedicarboxylate ligands. Cryst. Growth Des. 18, 5512–5520 (2018)

    Article  CAS  Google Scholar 

  21. 21.

    Hooft, R.W.W.: COLLECT. Nonius BV, Delft (1998)

    Google Scholar 

  22. 22.

    APEX3 Crystallography Software Suite, Ver. 2019.1–0; Bruker AXS: Madison, WI, USA (2019).

  23. 23.

    Otwinowski, Z., Minor, W.: Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    SAINT, Ver. 8.40A; Bruker Nano, Madison, WI (2019)

  25. 25.

    SADABS.: Bruker/Siemens Area Detector Absorption and Other Corrections, Ver. 2016/2; Bruker AXS, Madison, WI (2016)

  26. 26.

    Sheldrick, G.M.: SHELXT – integrated space-group and crystal-structure determination. Acta Cryst. A71, 3–8 (2015)

    Google Scholar 

  27. 27.

    Sheldrick, G.M.: Crystal structure refinement with SHELXL. Acta Cryst. C71, 3–8 (2015)

    Google Scholar 

  28. 28.

    Hübschle, C.B., Sheldrick, G.M., Dittrich, B.: ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 44, 1281–1284 (2011)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  29. 29.

    Farrugia, L.J.: WinGX and ORTEP for windows: an update. J. Appl. Crystallogr. 45, 849–854 (2012)

    CAS  Article  Google Scholar 

  30. 30.

    Momma, K., Izumi, F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011)

    CAS  Article  Google Scholar 

  31. 31.

    Blatov, V.A., Shevchenko, A.P., Proserpio, D.M.: Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth Des. 14, 3576–3586 (2014)

    CAS  Article  Google Scholar 

  32. 32.

    Groom, C.R., Bruno, I.J., Lightfoot, M.P., Ward, S.C.: The Cambridge structural database. Acta Cryst. B72, 171–179 (2016)

    Google Scholar 

  33. 33.

    Ravikumar, K., Swamy, G.Y.S.K., Lakshmi, N.V., Chandramohan, K.: Molecular interactions in substituted 2,2′-bipyridines: crystal structures of 2,2′-bipyridine-3,3′-dicarboxylic acid monohydrate and (2,2′-bipyridine-3,3′-dicarboxylic acid)dichlorocopper(II) dihydrate. J. Chem. Crystallogr. 27, 119–124 (1997)

    CAS  Article  Google Scholar 

  34. 34.

    Zhao, B.Z., Hao, X.R., Han, Z.G., Fu, Q., Chen, Y.G.: A novel Cu(II) coordination polymer with 2,2′-bipyridine-3,3′-dicarboxylic acid. Acta Cryst. C61, m48–m50 (2003)

    Google Scholar 

  35. 35.

    Swamy, G.Y.S.K., Chandramohan, K., Lakshmi, N.V., Ravikumar, K.: Crystal structure of catena–poly[tetraaqua(2,2′-bipyridine-3,3′-dicarboxylato)Mn(II)]. Z. Krist. Cryst. Mater. 213, 191–194 (1998)

    CAS  Google Scholar 

  36. 36.

    Burnet, S., Hall, A.K., Harrowfield, J.M., Koutsantonis, G.A., Sanford, V., Sauter, D., Skelton, B.W., White, A.H.: Alkali metal complexes of aromatic polycarboxylates – a balance of π-stacking and coordinate bonding interactions? Supramol. Chem. 15, 291–312 (2003)

    CAS  Article  Google Scholar 

  37. 37.

    Gomez, G.E., Ridenour, J.A., Byrne, N.M., Shevchenko, A.P., Cahill, C.L.: Novel heterometallic uranyl-transition metal materials: structure, topology, and solid state photoluminescence properties. Inorg. Chem. 58, 7243–7254 (2019)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Hancock, R.D., Martell, A.E.: Ligand design for selective complexation of metal ions in aqueous solution. Chem. Rev. 89, 1875–1914 (1989)

    CAS  Article  Google Scholar 

  39. 39.

    Cousson, A., Proust, J., Pagès, M., Robert, F., Rizkalla, E.: Structure of dibenzoatodioxouranium(VI). Acta Cryst. C46, 2316–2318 (1990)

    CAS  Google Scholar 

  40. 40.

    Milhacea, I., Henry, N., Bousquet, T., Volkringer, C., Loiseau, T.: Sixfold coordinated uranyl cations in extended coordination polymers. Cryst. Growth Des. 12, 4641–4648 (2012)

    Article  CAS  Google Scholar 

  41. 41.

    Thuéry, P., Harrowfield, J.: Structural consequences of cis/trans Isomerism of 1,4-cyclohexanedicarboxylate in its complexes with uranyl ion: from molecular species to 2D and 3D entangled nets. Inorg. Chem. 56, 13464–13481 (2017)

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  42. 42.

    Thuéry, P., Harrowfield, J.: Coordination polymers and cage-containing frameworks in uranyl ion complexes with rac- and (1R,2R)-trans-1,2-cyclohexanedicarboxylates: consequences of chirality. Inorg. Chem. 56, 1455–1469 (2017)

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Zhao, R., Li, F.-Z., Lu, J.-P., Mei, L., Hu, K.-Q., Chai, Z.-F., Shi, W.-Q.: A new preorganised metallolig and linker for the construction of luminescent coordination polymers. Cryst. Growth Des. 20, 6966–6972 (2020)

    CAS  Article  Google Scholar 

  44. 44.

    Thuéry, P., Harrowfield, J.: Zero-, mono- and diperiodic uranyl ion complexes with the diphenate dianion: influences of transition metal ion coordination and differential UVI chelation. Dalton Trans 49, 817–828 (2020)

    PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Wolff, S.K., Grimwood, D.J., McKinnon, J.J., Turner, M.J., Jayatilaka, D., Spackman, M.A.: CrystalExplorer 3.1, University of Western Australia (2012)

  46. 46.

    McKenzie, C.F., Spackman, P.R., Jayatilaka, D., Spackman, M.A.: IUCrJ 4, 575–587 (2017)

    Article  Google Scholar 

  47. 47.

    Alcock, N.W., Flanders, D.J.: Actinide structural studies 14: two uranyl complexes containing 2,4-pentanedione. Acta Cryst. C43, 1480–1483 (1987)

    CAS  Google Scholar 

  48. 48.

    Kawasaki, T., Nishimura, T.: Uranyl(VI) acetylacetonate coordination compounds with various N-heterocyclic ligands. Bull. Chem. Soc. Jpn 83, 1528–1530 (2010)

    CAS  Article  Google Scholar 

  49. 49.

    Comyns, A.E., Gatehouse, B.M., Wait, E.: The chemistry of uranyl acetylacetonate complex. J. Chem. Soc. 4655–4665 (1958)

  50. 50.

    Vigato, P.A., Peruzzo, V., Tamburini, S.: The evolution of β-diketone or β-diketophenol ligands and related complexes. Coord. Chem. Rev. 253, 1099–1201 (2009)

    CAS  Article  Google Scholar 

  51. 51.

    Charpin, P., Lance, M., Nierlich, M., Vigner, D.: Etude structurale de l’(hexaméthylphosphoramide)dioxobis(trifluoro-1 phényl-4 butanedionato-2,4)uranium(VI). Acta Cryst. C42, 987–989 (1986)

    CAS  Google Scholar 

  52. 52.

    Zucchi, G., Thuéry, P.: CSD Communication, refcode GOKVUZ (2010)

  53. 53.

    Sidorenko, G.V., Grigorev, M.S., Guzhii, V.V., Suglobov, D.N., Tananaev, I.G.: Crystal and molecular structure of uranyl acetylacetonate dimer, [UO2(C5H7O2)2]2. Radiokhimiya 51, 303–307 (2009)

    Google Scholar 

  54. 54.

    Bergman, J.G., Cotton, F.A.: J. Am. Chem. Soc. 86, 2941–2942 (1964)

    Article  Google Scholar 

  55. 55.

    Grigoriev, M.S., Den Auwer, C., Meyer, D., Moisy, P.: Poly[[[diaquadioxouranium(VI)]-μ3-nitrilotriacetato-κ3O::Oʹʹ]trihydrate]. Acta Cryst. C 62, m163–m165 (2006)

    Article  CAS  Google Scholar 

  56. 56.

    Thuéry, P.: Uranyl ion complexation by the tripodal ligand nitrilotriacetate. Inorg. Chem. Commun. 10, 423–426 (2007)

    Article  CAS  Google Scholar 

  57. 57.

    Thuéry, P., Harrowfield, J.: Uranyl–organic frameworks with polycarboxylates: unusual effects of a coordinating solvent. Cryst. Growth Des. 14, 1314–1323 (2014)

    Article  CAS  Google Scholar 

  58. 58.

    Thuéry, P., Harrowfield, J.: Anchoring flexible uranyl dicarboxylate chains through stacking interactions of ancillary ligands on chiral U(VI) centres. CrystEngComm 18, 3905–3918 (2016)

    Article  CAS  Google Scholar 

  59. 59.

    Unruh, D.K., Gojdas, K., Libo, A., Forbes, T.Z.: Development of metal-organic nanotubes exhibiting low-temperature, reversible exchange of confined “ice channels.” J. Am. Chem. Soc. 135, 7398–7401 (2013)

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Jiang, J., Sarsfield, M.J., Renshaw, J.C., Livens, F.R., Collison, D., Charnock, J.M., Helliwell, M., Eccles, H.: Synthesis and characterization of uranyl compounds with iminodiacetate and oxydiacetate displaying variable denticity. Inorg. Chem. 41, 2799–2806 (2002)

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Unruh, D.K., Libo, A., Streicher, L., Forbes, T.Z.: Synthesis and characterisation of 1-D uranyl thiodiglycolate coordination polymers. Polyhedron 73, 110–117 (2014)

    CAS  Article  Google Scholar 

  62. 62.

    Borkowski, L.A., Cahill, C.L.: A novel uranium-containing coordination polymer: poly[dioxouranium(VI)-μ4-n-pentane-1,5-dicarboxylato]. Acta Cryst. E61, m816–m817 (2005)

    Google Scholar 

  63. 63.

    Qiu, J., Ling, J., Sieradzki, C., Nguyen, K., Wylie, E.M., Szymanowski, J.E.S., Burns, P.C.: Expanding the crystal chemistry of uranyl peroxides: four hybrid uranyl-peroxide structures containing EDTA. Inorg. Chem. 53, 12084–12091 (2014)

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Ionov, S.V., Crabbe, C., Ionova, G.V.: Influence of ligand substitution on uranium-ligand bond energies in the equatorial plane of uranyl compounds. Russ. J. Coord. Chem. 28, 267–276 (2002)

    Article  Google Scholar 

  65. 65.

    Farkas, I., Banyai, I., Szabo, Z., Wahlgren, U., Grenthe, I.: Rates and mechanisms of water exchange of UO22+(aq) and UO2(oxalate)F(H2O)2: a variable-temperature 17O and 19F NMR study. Inorg. Chem. 39, 799–805 (2000)

    CAS  PubMed  Article  Google Scholar 

Download references

Funding

None.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jack Harrowfield.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Dedicated to the memory of Jacques Vicens, a man for whom chemistry was truly an art.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Atoini, Y., Harrowfield, J., Kim, Y. et al. Filling the equatorial garland of uranyl ion: its content and limitations. J Incl Phenom Macrocycl Chem (2021). https://doi.org/10.1007/s10847-021-01048-8

Download citation

Keywords

  • Uranyl ion complexes
  • Structure determination
  • Hydrogen bonding