Enhanced efficacy against bacterial biofilms via host:guest cyclodextrin‐doxycycline inclusion complexes


Periodontal disease is characterized by a microbial infection and it is one of the major causes of teeth loss. The growth of pathogenic bacteria in oral cavity, such as Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans), provides a favorable enviromment for the biofilm formation, which result in periodontal diseases. The development of new technologies to potentiate existing drugs, avoiding bacterial biofilms resistance and improving chemical stability is highly desirable. Here, we report the use of host–guest chemistry to enhance the activity of antibacterial doxycycline (DOX) in A. actinomycetemcomitans bacterial strain suspension and biofilm in vitro through complexation with hydroxypropyl-β-cyclodextrin (HPβCD) using different molar ratios of DOX/HPβCD. 2D 1H NMR confirmed the host–guest complexation of DOX and HPβCD. We assessed the colloidal characteristics of the complex DOX/HPβCD via Dynamic Light Scattering (DLS) and Zeta Potential (PZ). The mixing ratio 1:2 DOX/HPβCD significantly decreased the minimum inhibitory concentration (MIC) and improved efficacy against A. actinomycetemcomitans suspensions and biofilms, respectively, when compared to free DOX and other DOX/HPβCD complexes. Further, the interaction of different molar ratio proportions of DOX/HPβCD complex with bacterial membrane was demonstrated via Isothermal Titration Calorimetry (ITC). Thus, we suggested the enhanced efficacy of the DOX/HPβCD complexes, at molar ratio 1:2, is due the higher cyclodextrin ratio, which potentiate the interaction between drug and bacterial membrane through nonionic interactions, such as hydrogen bonding or other van der Waals interactions. Collectively, the development of these complexes enables increased efficacy against bacterial biofilms, which hold promise for the treatment of aggressive and non-responsive forms of periodontitis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data availability

All data and material available upon request.


  1. 1.

    Tonetti, M.S., Greenwell, H., Kornman, K.S.: Staging and grading of periodontitis: framework and proposal of a new classification and case definition. J. Periodontol. 89(Suppl 1), S159–S172 (2018)

    PubMed  Article  Google Scholar 

  2. 2.

    Ramseier, C.A., Anerud, A., Dulac, M., Lulic, M., Cullinan, M.P., Seymour, G.J., Faddy, M.J., Burgin, W., Schatzle, M., Lang, N.P.: Natural history of periodontitis: disease progression and tooth loss over 40 years. J. Clin. Periodontol. 44, 1182–1191 (2017)

    PubMed  Article  Google Scholar 

  3. 3.

    Houshmand, M., Holtfreter, B., Berg, M.H., Schwahn, C., Meisel, P., Biffar, R., Kindler, S., Kocher, T.: Refining definitions of periodontal disease and caries for prediction models of incident tooth loss. J. Clin. Periodontol. 39, 635–644 (2012)

    PubMed  Article  Google Scholar 

  4. 4.

    Marcenes, W., Kassebaum, N.J., Bernabé, E., Flaxman, A., Naghavi, M., Lopez, A., Murray, C.J.L.: Global burden of oral conditions in 1990–2010: a systematic analysis. J. Dent. Res. 92, 592–597 (2013)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Papapanou, P.N.: The prevalence of periodontitis in the US: forget what you were told. J. Dent. Res. 91, 907–908 (2012)

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Hajishengallis, G.: Periodontitis: from microbial immune subversion to systemic inflammation. Nat. Rev. Immunol. 15, 30–44 (2015)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Laine, M.L., Loos, B.G., Crielaard, W.: Gene polymorphisms in chronic periodontitis. Int J Dent. 2010, 1–22 (2010)

  8. 8.

    Deas, D.E., Moritz, A.J., Sagun, R.S.J., Gruwell, S.F., Powell, C.A.: Scaling and root planing vs. conservative surgery in the treatment of chronic periodontitis. Periodontology 71, 128–139 (2016)

  9. 9.

    Larsson, L., Decker, A.M., Nibali, L., Pilipchuk, S.P., Berglundh, T., Giannobile, W.V.: Regenerative medicine for periodontal and peri-implant diseases. J. Dent. Res. 95, 255–266 (2016)

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Habashneh, Al, R., Alsalman, W., Khader, Y.: Ozone as an adjunct to conventional nonsurgical therapy in chronic periodontitis: a randomized controlled clinical trial. J Periodontal Res. 50, 37–43 (2015)

    Article  CAS  Google Scholar 

  11. 11.

    Amano, A., Chen, C., Honma, K., Li, C., Settem, R.P., Sharma, A.: Genetic characteristics and pathogenic mechanisms of periodontal pathogens. Adv. Dent. Res. 26, 15–22 (2014)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Dhamecha, H.R.R., Jagwani, D., Rao, S., Jadhav, M., Shaikh, K., Puzhankara, S., Jalalpure, L.: S.: Local drug delivery systems in the management of periodontitis: a scientific review. J Control Release 307, 393–409 (2019)

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Cortelli, J.R., Aquino, D.R., Cortelli, S.C., Roman-Torres, C.V.G., Franco, G.C.N., Gomez, R.S., Batista, L.H.B., Costa, F.O.: Aggregatibacter actinomycetemcomitans serotypes infections and periodontal conditions: a two-way assessment. Eur. J. Clin. Microbiol. Infect. Dis. 31, 1311–1318 (2012)

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Slots, J., Ting, M.: Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in human periodontal disease: occurrence and treatment. Periodontology 20, 82–121 (1999)

  15. 15.

    Mira, A., Simon-Soro, A., Curtis, M.A.: Role of microbial communities in the pathogenesis of periodontal diseases and caries. J. Clin. Periodontol. 44(Suppl 18), S23–S38 (2017)

    PubMed  Article  Google Scholar 

  16. 16.

    Yoshida, A., Ennibi, O.-K., Miyazaki, H., Hoshino, T., Hayashida, H., Nishihara, T., Awano, S., Ansai, T.: Quantitative discrimination of Aggregatibacter actinomycetemcomitans highly leukotoxic JP2 clone from non-JP2 clones in diagnosis of aggressive periodontitis. BMC Infect. Dis. 12, 253–210 (2012)

    PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Haubek, D., Ennibi, O.-K., Poulsen, K., Vaeth, M., Poulsen, S., Kilian, M.: Risk of aggressive periodontitis in adolescent carriers of the JP2 clone of Aggregatibacter (Actinobacillus) actinomycetemcomitans in Morocco: a prospective longitudinal cohort study. Lancet 371, 237–242 (2008)

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Penesyan, A., Nagy, S.S., Kjelleberg, S., Gillings, M.R., Paulsen, I.T.: Rapid microevolution of biofilm cells in response to antibiotics. NPJ Biofilms Microbiomes. 5, 34–14 (2019)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  19. 19.

    Høiby, N., Bjarnsholt, T., Givskov, M., Molin, S., Ciofu, O.: Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 35, 322–332 (2010)

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Bridier, A., Briandet, R., Thomas, V., Dubois-Brissonnet, F.: Resistance of bacterial biofilms to disinfectants: a review. Biofouling. 27, 1017–1032 (2011)

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Walker, C., Sedlacek, M.J.: An in vitro biofilm model of subgingival plaque. Oral Microbiol. Immunol. 22, 152–161 (2007)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Mah, T.F., O’Toole, G.A.: Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 9, 34–39 (2001)

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Arciola, C.R., Campoccia, D., Speziale, P., Montanaro, L., Costerton, J.W.: Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials. 33, 5967–5982 (2012)

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Heitz-Mayfield, L.J.A.: Systemic antibiotics in periodontal therapy. Aust. Dent. J. 54(Suppl 1), S96–S101 (2009)

    PubMed  Article  Google Scholar 

  25. 25.

    Ghangurde, A.A., Ganji, K.K., Bhongade, M.L., Sehdev, B.: Role of chemically modified tetracyclines in the management of periodontal diseases: a review. Drug Res (Stuttg) 67, 258–265 (2017)

    CAS  Article  Google Scholar 

  26. 26.

    Preshaw, P.M., Hefti, A.F., Novak, M.J., Michalowicz, B.S., Pihlstrom, B.L., Schoor, R., Trummel, C.L., Dean, J., Van Dyke, T.E., Walker, C.B., Bradshaw, M.H.: Subantimicrobial dose doxycycline enhances the efficacy of scaling and root planing in chronic periodontitis: a multicenter trial. J. Periodontol. 75, 1068–1076 (2004)

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Mohammad, A.R., Preshaw, P.M., Bradshaw, M.H., Hefti, A.F., Powala, C.V., Romanowicz, M.: Adjunctive subantimicrobial dose doxycycline in the management of institutionalised geriatric patients with chronic periodontitis. Gerodontology. 22, 37–43 (2005)

    PubMed  Article  Google Scholar 

  28. 28.

    Novak, M.J., Johns, L.P., Miller, R.C., Bradshaw, M.H.: Adjunctive benefits of subantimicrobial dose doxycycline in the management of severe, generalized, chronic periodontitis. J. Periodontol. 73, 762–769 (2002)

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Golub, L.M., McNamara, T.F., Ryan, M.E., Kohut, B., Blieden, T., Payonk, G., Sipos, T., Baron, H.J.: Adjunctive treatment with subantimicrobial doses of doxycycline: effects on gingival fluid collagenase activity and attachment loss in adult periodontitis. J. Clin. Periodontol. 28, 146–156 (2001)

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Gueders, M.M., Bertholet, P., Perin, F., Rocks, N., Maree, R., Botta, V., Louis, R., Foidart, J.-M., Noel, A., Evrard, B., Cataldo, D.D.: A novel formulation of inhaled doxycycline reduces allergen-induced inflammation, hyperresponsiveness and remodeling by matrix metalloproteinases and cytokines modulation in a mouse model of asthma. Biochem. Pharmacol. 75, 514–526 (2008)

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Griffin, M.O., Fricovsky, E., Ceballos, G., Villarreal, F.: Tetracyclines: a pleitropic family of compounds with promising therapeutic properties. Review of the literature. Am. J. Physiol. Cell Physiol. 299, C539–C548 (2010)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Madinier, I.M., Fosse, T.B., Hitzig, C., Charbit, Y., Hannoun, L.R.: Resistance profile survey of 50 periodontal strains of Actinobacillus actinomyectomcomitans. J. Periodontol. 70, 888–892 (1999)

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Kulik, E.M., Lenkeit, K., Chenaux, S., Meyer, J.: Antimicrobial susceptibility of periodontopathogenic bacteria. J. Antimicrob. Chemother. 61, 1087–1091 (2008)

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Ardila, C.M., Lopez, M.A., Guzman, I.C.: High resistance against clindamycin, metronidazole and amoxicillin in Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans isolates of periodontal disease. Med Oral Patol Oral Cir Bucal. 15, e947–e951 (2010)

    PubMed  Article  Google Scholar 

  35. 35.

    Feres, M., Haffajee, A.D., Goncalves, C., Allard, K.A., Som, S., Smith, C., Goodson, J.M., Socransky, S.S.: Systemic doxycycline administration in the treatment of periodontal infections (II). Effect on antibiotic resistance of subgingival species. J. Clin. Periodontol. 26, 784–792 (1999)

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Chadha, V.S., Bhat, K.M.: The evaluation of doxycycline controlled release gel versus doxycycline controlled release implant in the management of periodontitis. J Indian Soc Periodontol. 16, 200–206 (2012)

    PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Joshi, D., Garg, T., Goyal, A.K., Rath, G.: Advanced drug delivery approaches against periodontitis. Drug Delivery. 23, 363–377 (2014)

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Pataro, A.L., Franco, C.F., Santos, V.R., Cortés, M.E., Sinisterra, R.D.: Surface effects and desorption of tetracycline supramolecular complex on bovine dentine. Biomaterials. 24, 1075–1080 (2003)

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Denadai, ÂM.L., Teixeira, K.I., Santoro, M.M., Pimenta, A.M.C., Cortés, M.E., Sinisterra, R.D.: Supramolecular self-assembly of beta-cyclodextrin: an effective carrier of the antimicrobial agent chlorhexidine. Carbohydr. Res. 342, 2286–2296 (2007)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Franco, C.F., Pataro, A.L., Souza, E., Santos, L.C.R., Cortes, V.R., Sinisterra, M.E.: R.D.: In vitro effects of a chlorhexidine controlled delivery system. Artif. Organs 27, 486–491 (2003)

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Guimarães, P.P.G., Tan, M., Tammela, T., Wu, K., Chung, A., Oberli, M., Wang, K., Spektor, R., Riley, R.S., Viana, C.T.R., Jacks, T., Langer, R., Mitchell, M.J.: Potent in vivo lung cancer Wnt signaling inhibition via cyclodextrin-LGK974 inclusion complexes. J Control Release. 290, 75–87 (2018)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  42. 42.

    He, Z.-X., Wang, Z.-H., Zhang, H.-H., Pan, X., Su, W.-R., Liang, D., Wu, C.-B.: Doxycycline and hydroxypropyl-β-cyclodextrin complex in poloxamer thermal sensitive hydrogel for ophthalmic delivery. Acta Pharm. Sin. B. 1, 254–260 (2011)

    CAS  Article  Google Scholar 

  43. 43.

    National Committee for Clinical Laboratory Standards: Performance Standards for Antimicrobial Susceptibility Testing; Twenty First International Supplement. Wayne, PA: (2011)

  44. 44.

    Wiegand, I., Hilpert, K., Hancock, R.E.W.: Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols. 3, 163–175 (2008)

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Burton, E., Yakandawala, N., LoVetri, K., Madhyastha, M.S.: A microplate spectrofluorometric assay for bacterial biofilms. J. Ind. Microbiol. Biotechnol. 34, 1–4 (2007)

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Erriu, M., Genta, G., Tuveri, E., Orrù, G., Barbato, G., Levi, R.: Microtiter spectrophotometric biofilm production assay analyzed with metrological methods and uncertainty evaluation. Measurement. 45, 1083–1088 (2012)

    Article  Google Scholar 

  47. 47.

    Margarida Pereira, A., Cristina Abreu, A., Simões, M.: Action of kanamycin against single and dual species biofilms of Escherichia coli and Staphylococcus aureus. J. Microbiol. Res. 2, 84–88 (2012).

    Article  Google Scholar 

  48. 48.

    Bisson-Boutelliez, C., Fontanay, S., Finance, C., Kedzierewicz, F.: Preparation and physicochemical characterization of amoxicillin beta-cyclodextrin complexes. AAPS PharmSciTech 11, 574–581 (2010)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Abdelwahed, W., Degobert, G., Dubes, A., Parrot-Lopez, H., Fessi, H.: Sulfated and non-sulfated amphiphilic-beta-cyclodextrins: impact of their structural properties on the physicochemical properties of nanoparticles. Int. J. Pharm. 351, 289–295 (2008)

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Denadai, ÂM.L., Santoro, M.M., Texeira, A.V., Sinisterra, R.D.: New insights regarding the cyclodextrin/AAS self-assembly: a molar ratio dependent system. Mater. Sci. Eng. C. 30, 417–422 (2010)

    CAS  Article  Google Scholar 

  51. 51.

    Lula, I., De Sousa, F.B., Denadai, ÂM.L., de Lima, G.F., Duarte, H.A., Mares Guia, dos, Faljoni-Alario, T.R., Santoro, A., de Camargo, M.M., Santos, A.C.M., dos, Sinisterra, R.A.S., R.D.: Interaction between bradykinin potentiating nonapeptide (BPP9a) and β-cyclodextrin: a structural and thermodynamic study. Mater. Sci. Eng. C. 32, 244–253 (2012)

  52. 52.

    Turnbull, W.B., Daranas, A.H.: On the value of c: can low affinity systems be studied by isothermal titration calorimetry? J. Am. Chem. Soc. 125, 14859–14866 (2003)

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Messner, M., Kurkov, S.V., Flavià-Piera, R., Brewster, M.E., Loftsson, T.: Self-assembly of cyclodextrins: the effect of the guest molecule. Mater. Sci. Eng. C. 408, 235–247 (2011)

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Teixeira, K.I.R., Araujo, P.V., Neves, B.R.A., Mahecha, G.A.B., Sinisterra, R.D., Cortes, M.E.: Ultrastructural changes in bacterial membranes induced by nano-assemblies beta-cyclodextrin chlorhexidine: SEM, AFM, and TEM evaluation. Pharm Dev Technol. 18, 600–608 (2013)

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Consuegra, J., de Lima, M.E., Santos, D., Sinisterra, R.D., Cortes, M.E.: Peptides: beta-cyclodextrin inclusion compounds as highly effective antimicrobial and anti-epithelial proliferation agents. J. Periodontol. 84, 1858–1868 (2013)

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Suárez, D.F., Consuegra, J., Trajano, V.C., Gontijo, S.M.L., Guimarães, P.P.G., Cortés, M.E., Denadai, ÂL., Sinisterra, R.D.: Structural and thermodynamic characterization of doxycycline/β-cyclodextrin supramolecular complex and its bacterial membrane interactions. Colloids Surf. B 118, 194–201 (2014)

    Article  CAS  Google Scholar 

  57. 57.

    Denadai, ÂM.L., de Oliveira, A.M., Daniel, I.M.P., Carneiro, L.A., Ribeiro, K.C., Beraldo, H., de O., da Costa, da Cunha, K.J.R., Cortés, V.C., Sinisterra, M.E.: R.D.: Chlorhexidine/losartan ionic pair binding and its nanoprecipitation: physico-chemical characterisation and antimicrobial activity. Supramol. Chem. 24, 204–212 (2012)

    CAS  Article  Google Scholar 

  58. 58.

    de Carvalho, F.G., Magalhães, T.C., Teixeira, N.M., Gondim, B.L.C., Carlo, H.L., Santos, dos, R.L., de Oliveira, A.R., Denadai, A.M.L.: Synthesis and characterization of TPP/chitosan nanoparticles: Colloidal mechanism of reaction and antifungal effect on C. albicans biofilm formation. Mater. Sci. Eng. C. 104, 109885 (2019)

  59. 59.

    Denadai, ÂM.L., Da Silva, J.G., Guimarães, P.P.G., Gomes, L.B.S., Mangrich, A.S., de Rezende, E.I.P., Daniel, I.M.P., Beraldo, H., Sinisterra, R.D.: Control of size in losartan/copper(II) coordination complex hydrophobic precipitate. Mater. Sci. Eng. C. 33, 3916–3922 (2013)

    CAS  Article  Google Scholar 

  60. 60.

    Loftsson, T., Duchene, D.: Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 329, 1–11 (2007)

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Wingender, J., Neu, T.R., Flemming, H.-C.: What are bacterial extracellular polymeric substances? In: Microbial Extracellular Polymeric Substances, pp. 1–19. Springer, Berlin (1999)

    Google Scholar 

  62. 62.

    Eastoe, J., Dalton, J.S.: Dynamic surface tension and adsorption mechanisms of surfactants at the air–water interface. Adv. Colloid Interface. Sci. 85, 103–144 (2000)

    CAS  PubMed  Article  Google Scholar 

Download references


We are grateful for CNPq, CAPES, FAPEMIG, INCT/Nanobiofar that support this investigation. The authors also thank Professor Gustavo Menezes, Immunobiophotonics Lab, Universidade Federal de Minas Gerais (UFMG) for technical support and constructive advice.


CNPq, CAPES, FAPEMIG, INCT/Nanobiofar that support this investigation.

Author information




PPGG, ACM, MEC and RDS conceived the ideas, designed the experiments, interpreted the data and wrote the manuscript. PPGG, ACM, KIRT, AMLD, and RAF conducted the experiments and analyzed the data. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Rubén Dario Sinisterra.

Ethics declarations

Conflict of interest

The authors have no conflict of interests to declare.

Consent for publication

All authors have read and approved this version of the article. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the Supplementary Information.

Supplementary Information 1 (DOCX 282 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guimarães, P.P.G., de Menezes, A.C., Teixeira, K.I.R. et al. Enhanced efficacy against bacterial biofilms via host:guest cyclodextrin‐doxycycline inclusion complexes. J Incl Phenom Macrocycl Chem (2021). https://doi.org/10.1007/s10847-020-01041-7

Download citation


  • Doxycycline
  • Hydroxypropyl-β-cyclodextrin
  • Inclusion complexes
  • Drug delivery
  • Biofilm
  • Aggregatibacter actinomycetemcomitans