Skip to main content
Log in

Hydrogen-bonded supramolecular metal-imidazolate frameworks: gas sorption, magnetic and UV/Vis spectroscopic properties

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

By varying reaction parameters for the syntheses of the hydrogen-bonded metal-imidazolate frameworks (HIF) HIF-1 and HIF-2 (featuring 14 Zn and 14 Co atoms, respectively) to increase their yields and crystallinity, we found that HIF-1 is generated in two different frameworks, named as HIF-1a and HIF-1b. HIF-1b is isostructural to HIF-2. We determined the gas sorption and magnetic properties of HIF-2. In comparison to HIF-1a (Brunauer–Emmett–Teller (BET) surface area of 471 m2 g−1), HIF-2 possesses overall very low gas sorption uptake capacities [BET(CO2) surface area = 85 m2 g−1]. Variable temperature magnetic susceptibility measurement of HIF-2 showed antiferromagnetic exchange interactions between the cobalt(II) high-spin centres at lower temperature. Theoretical analysis by density functional theory confirmed this finding. The UV/Vis-reflection spectra of HIF-1 (mixture of HIF-1a and b), HIF-2 and HIF-3 (with 14 Cd atoms) were measured and showed a characteristic absorption band centered at 340 nm, which was indicative for differences in the imidazolate framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Guillerm, V., Kim, D., Eubank, J.F., Luebke, R., Liu, X., Adil, K., Lah, M.S., Eddaoudi, M.: A supramolecular building approach for the design and construction of metal-organic frameworks. Chem. Soc. Rev. 43, 6141–6172 (2014)

    Article  CAS  PubMed  Google Scholar 

  2. Eddaoudi, M., Sava, D.F., Eubank, J.F., Adil, K., Guillerm, V.: Zeolite-like metal-organic frameworks (ZMOFs): design, synthesis, and properties. Chem. Soc. Rev. 44, 228–249 (2015)

    Article  CAS  PubMed  Google Scholar 

  3. Sava, D.F., Kravtsov, V.C., Eckert, J., Eubank, J.F., Nouar, F., Eddaoudi, M.: Exceptional stability and high hydrogen uptake in hydrogen-bonded metal-organic cubes possessing ACO and AST zeolite-like topologies. J. Am. Chem. Soc. 131, 10394–10396 (2009)

    Article  CAS  PubMed  Google Scholar 

  4. Guo, X.-Q., Wang, M., Meng, F., Tang, Y.-F., Tian, S., Yang, H.-L., Jiang, G.-Q., Zhu, J.-L.: Rational design and synthesis of an amino-functionalized hydrogen-bonded network with an ACO zeolite-like topology for gas storage. CrystEngComm 18, 5616–5619 (2016)

    Article  CAS  Google Scholar 

  5. Mondal, S.S., Bhunia, A., Kelling, A., Schilde, U., Janiak, C., Holdt, H.-J.: Giant Zn14 molecular building block in hydrogen-bonded network with permanent porosity for gas uptake. J. Am. Chem. Soc. 136, 44–47 (2014)

    Article  CAS  PubMed  Google Scholar 

  6. Mondal, S.S., Bhunia, A., Kelling, A., Schilde, U., Janiak, C., Holdt, H.-J.: A supramolecular Co(II)14-metal-organic cube in a hydrogen-bonded network and a Co(II)-organic framework with a flexible methoxy substituent. Chem. Commun. 50, 5441–5443 (2014)

    Article  CAS  Google Scholar 

  7. Mondal, S.S., Dey, S., Attallah, A.G., Bhunia, A., Kelling, A., Schilde, U., Krause-Rehberg, R., Janiak, C., Holdt, H.-J.: Missing building blocks defects in a porous hydrogen-bonded amide-imidazolate network proven by positron annihilation lifetime spectroscopy. Chem. Sel. 1, 4320–4325 (2016)

    CAS  Google Scholar 

  8. Bhunia, A., Boldog, I., Möller, A., Janiak, C.: Highly stable nanoporous covalent triazine-based frameworks with an adamantane core for carbon dioxide sorption and separation. J. Mater. Chem. A 1, 14990–14999 (2013)

    Article  CAS  Google Scholar 

  9. Mondal, S.S., Dey, S., Baburin, I.A., Kelling, A., Schilde, U., Seifert, G., Janiak, C., Holdt, H.-J.: Syntheses of two imidazolate-4-amide-5-imidate linker-based hexagonal metal-organic frameworks with flexible ethoxy substituent. CrystEngComm 15, 9394–9399 (2013)

    Article  CAS  Google Scholar 

  10. Mondal, S.S., Bhunia, A., Attallah, A.G., Matthes, P.R., Kelling, A., Schilde, U., Müller-Buschbaum, K., Krause-Rehberg, R., Janiak, C., Holdt, H.-J.: Study of the discrepancies between crystallographic porosity and guest access into cadmium-imidazolate framework and tunable luminescent properties by incorporation of lanthanides. Chem. Eur. J. 22, 6905–6913 (2016)

    Article  CAS  PubMed  Google Scholar 

  11. Steenbock, T., Tasche, J., Lichtenstein, A.I., Herrmann, C.: A Green’s-function approach to exchange spin coupling as a new tool for quantum chemistry. J. Chem. Theory Comput. 11, 5651 (2015)

    Article  CAS  PubMed  Google Scholar 

  12. Leddver, A.B.P.: Inorganic Electronic Spectroscopy, p. 323. Elsevier, Amsterdam (1968)

    Google Scholar 

  13. Ciampolini, M., Nardi, N.: Complexes of bivalent iron, cobalt, nickel, and copper with bis(2-dimethylaminoethyl)oxide. Inorg. Chem. 6, 445–449 (1967)

    Article  CAS  Google Scholar 

  14. Anderson, W.K., Bhattacharjee, D., Houston, D.M.: Design, synthesis, antineoplastic activity, and chemical properties of bis(carbamate) derivatives of 4,5-bis(hydroxymethyl)-imidazole. J. Med. Chem. 32, 119–127 (1989)

    Article  CAS  PubMed  Google Scholar 

  15. Kahn, O.: Molecular Magnetism. VCH, New York (1993)

    Google Scholar 

  16. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, N.J., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision A.1. Gaussian Inc., Wallingford, CT (2009)

    Google Scholar 

  17. Parr, R.G., Yang, W.: Density-Functional Theory of Atoms and Molecules. Oxford University Press, New York (1989)

    Google Scholar 

  18. Cramer, C.J., Truhlar, D.G.: Density functional theory for transition metals and transition metal chemistry. Phys. Chem. Chem. Phys. 11, 10757 (2019)

    Article  CAS  Google Scholar 

  19. Weigend, F., Ahlrichs, R.: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005)

    Article  CAS  PubMed  Google Scholar 

  20. Weigend, F.: Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8, 1057–1065 (2006)

    Article  CAS  PubMed  Google Scholar 

  21. Becke, A.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098 (1988)

    Article  CAS  Google Scholar 

  22. Dirac, P.: Quantum mechanics of many-electron systems. Proc. R. Soc. A 123, 714 (1929)

    Article  CAS  Google Scholar 

  23. Slater, J.: A simplification of the Hartree–Fock method. Phys. Rev. 81, 385 (1951)

    Article  CAS  Google Scholar 

  24. Vosko, S., Wilk, L., Nusair, M.: Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58, 1200 (1980)

    Article  CAS  Google Scholar 

  25. Lee, C., Yang, W., Parr, R.: Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785 (1988)

    Article  CAS  Google Scholar 

  26. Becke, A.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  27. Perdew, J., Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B. 45, 1200 (1992)

    Article  Google Scholar 

  28. Steenbock, T., Herrmann, C.: Towards an automated analysis of exchange pathways in spin-coupled systems. J. Comp. Chem. 39, 81–92 (2018)

    Article  CAS  Google Scholar 

  29. Deffner, M., Groß, L., Steenbock, T., Voigt, B. A., Solomon, G. C., Herrmann, C.: Artaios—a code for postprocessing quantum chemical electronic structure calculations. https://www.chemie.uni-hamburg.de/ac/herrmann/software/index.html (2008–2019)

  30. Liechtenstein, A.I., Katsnelson, M.I., Gubanov, V.: Exchange interactions and spin-wave stiffness in ferromagnetic metals. J. Phys. F 14, L125–L128 (1984)

    Article  CAS  Google Scholar 

  31. Han, M., Ozaki, T., Yu, J.: Electronic structure, magnetic interactions, and the role of ligands in Mnn(n = 4, 12) single-molecule magnets. Phys. Rev. B 70, 184421 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. J. Traeger and Ms. S. Lubahn (Universität Potsdam) for the ICP OES measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Jürgen Holdt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 25166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alrefai, A., Mondal, S.S., Wruck, A. et al. Hydrogen-bonded supramolecular metal-imidazolate frameworks: gas sorption, magnetic and UV/Vis spectroscopic properties. J Incl Phenom Macrocycl Chem 94, 155–165 (2019). https://doi.org/10.1007/s10847-019-00926-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-019-00926-6

Keywords

Navigation