Skip to main content
Log in

Deciphering ephedrine inclusion complexes with β-cyclodextrin, 18-crown-6 and cucurbit[7]uril using spectral and molecular modeling methods

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Inclusion complexes of ephedrine (EPh) with β-cyclodextrin (βCD), 18-crown-6 (18C6) and cucurbit[7]uril (CB7) were investigated using experimental and theoretical methods. The addition of βCD to the aqueous solution of EPh enhances the fluorescence emission spectrum at 312 nm. Whereas, the addition of CB7 and 18C6 cause enhancement of this band accompanied by growth of a band at around 412 nm. Electrospray ionization mass spectrometry, ESI-MS, results suggested that complexes of various stoichiometries are formed. The 1:1 complexes are the most dominant ones however, 1:2 (host: guest) stoichiometry and 2:1 (host: guest) stoichiometry for EPh with βCD and CB7 are also observed. The 1HNMR has indicated that EPh enters the CD hydrophobic cavity from the secondary rim and the aromatic ring is deeply inserted into the cavity with the ammonium ion left outside exposed to the aqueous solution. The molecular dynamics, MD, calculations show that EPh forms a stable complex with βCD and CB7 but not with 18C6. Furthermore, the ternary complexes of EPh–βCD with 18C6 and CB7 were found unstable according to the MD simulation studies, and ESI-MS experiments. The solid-state complexes prepared by freeze-drying and characterized by Fourier transform infrared spectroscopy and powder X-ray diffraction confirmed that only binary complexes are formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Murray, J., Kim, K., Ogoshi, T., Yaod, W., Gibb, B.C., Yao, W., Gibb, B.C.: The aqueous supramolecular chemistry of cucurbit[n]urils, pillar[n]arenes and deep-cavity cavitands. Chem. Soc. Rev. 46, 2479–2496 (2017). https://doi.org/10.1039/C7CS00095B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sherje, A.P., Dravyakar, B.R., Kadam, D., Jadhav, M.: Cyclodextrin-based nanosponges: a critical review. Carbohydr. Polym. 173, 37–49 (2017). https://doi.org/10.1016/j.carbpol.2017.05.086

    Article  CAS  PubMed  Google Scholar 

  3. Barrow, S.J., Kasera, S., Rowland, M.J., Barrio, J., del Scherman, O.A., Del Barrio, J., Scherman, O.A.: Cucurbituril-Based Mol. Recogn. Chem. Rev. 115, 12320–12406 (2015). https://doi.org/10.1021/acs.chemrev.5b00341

    Article  CAS  Google Scholar 

  4. Assaf, K.I., Nau, W.M.: Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chem. Soc. Rev. 44, 394–418 (2015). https://doi.org/10.1039/C4CS00273C

    Article  CAS  PubMed  Google Scholar 

  5. Yang, Z., Yao, X., Xiao, Z., Chen, H., Ji, H.: Preparation and release behaviour of the inclusion complexes of phenylethanol with β-cyclodextrin. Flavour Fragr. J. 31, 206–216 (2016). https://doi.org/10.1002/ffj.3302

    Article  CAS  Google Scholar 

  6. Alonso, E.C.P., Riccomini, K., Silva, L.A.D., Galter, D., Lima, E.M., Durig, T., Taveira, S.F., Martins, F.T., Cunha-Filho, M.S.S., Marreto, R.N.: Development of carvedilol-cyclodextrin inclusion complexes using fluid-bed granulation: a novel solid-state complexation alternative with technological advantages. J. Pharm. Pharmacol. 68, 1299–1309 (2016). https://doi.org/10.1111/jphp.12601

    Article  CAS  PubMed  Google Scholar 

  7. Yang, K., Wan, S., Chen, B., Gao, W., Chen, J., Liu, M., He, B., Wu, H.: Dual pH and temperature responsive hydrogels based on β-cyclodextrin derivatives for atorvastatin delivery. Carbohydr. Polym. 136, 300–306 (2016). https://doi.org/10.1016/j.carbpol.2015.08.096

    Article  CAS  PubMed  Google Scholar 

  8. Wei, Y., Zhang, J., Zhou, Y., Bei, W., Li, Y., Yuan, Q., Liang, H.: Characterization of glabridin/hydroxypropyl-β-cyclodextrin inclusion complex with robust solubility and enhanced bioactivity. Carbohydr. Polym. 159, 152–160 (2017). https://doi.org/10.1016/j.carbpol.2016.11.093

    Article  CAS  PubMed  Google Scholar 

  9. Carmo, C.S., do, Maia, C., Poejo, J., Lychko, I., Gamito, P., Nogueira, I., Bronze, M.R., Serra, A.T., Duarte, C.M.M.: Microencapsulation of α-tocopherol with zein and β-cyclodextrin using spray drying for colour stability and shelf-life improvement of fruit beverages. RSC Adv. 7, 32065–32075 (2017)

    Article  Google Scholar 

  10. Pal, K., Chandra, F., Mallick, S., Koner, A.L.: pH dependent supramolecular recognition of dapoxyl sodium sulfonate with 2-hydroxypropyl β-cyclodextrin: an application towards food-additive formulation. New J. Chem. 40, 6093–6100 (2016). https://doi.org/10.1039/C5NJ03415A

    Article  CAS  Google Scholar 

  11. Pinho, E., Grootveld, M., Soares, G., Henriques, M.: Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohydr. Polym. 101, 121–135 (2014). https://doi.org/10.1016/j.carbpol.2013.08.078

    Article  CAS  PubMed  Google Scholar 

  12. Gokel, G.W., Leevy, W.M., Weber, M.E.: Crown ethers: sensors for ions and molecular scaffolds for materials and biological models. Chem. Rev. 104, 2723–2750 (2004). https://doi.org/10.1021/cr020080k

    Article  CAS  PubMed  Google Scholar 

  13. Sarma, M., Chatterjee, T., Das, S.K.: Ammonium–crown ether based host–guest systems: N–H⋯O hydrogen bond directed guest inclusion featuring N–H donor functionalities in angular geometry. RSC Adv. 2, 3920 (2012). https://doi.org/10.1039/c2ra20109g

    Article  CAS  Google Scholar 

  14. Späth, A., König, B.: Molecular recognition of organic ammonium ions in solution using synthetic receptors. Beilstein J. Org. Chem. 6, 32 (2010). https://doi.org/10.3762/bjoc.6.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rüdiger, V., Schneider, H.-J., Solov’ev, V.P., Kazachenko, V.P., Raevsky, O.: Crown ether–ammonium complexes: binding mechanisms and solvent effects. Eur. J. Org. Chem. 1999, 1847–1856 (1999)

    Article  Google Scholar 

  16. Doxsee, K.M., Francis, P.E., Weakley, T.J.R., Francis, P.E. Jr., Weakley, T.J.R., Doxsee, K.M. Jr.: Hydration, ion pairing, and sandwich motifs in ammonium nitrate complexes of crown ethers. Tetrahedron. 56, 6683–6691 (2000). https://doi.org/10.1016/S0040-4020(00)00487-7

    Article  CAS  Google Scholar 

  17. Kryatova, O.P., Korendovych, I.V., Rybak-Akimova, E.V., Kryatova, O.P., Korendovych, I.V., Kryatova, E.V., Korendovych, I.V., Rybak-Akimova, E.V.: Complexes of benzo-15-crown-5 with protonated primary amines and diamines. Tetrahedron. 60, 4579–4588 (2004). https://doi.org/10.1016/j.tet.2004.03.080

    Article  CAS  Google Scholar 

  18. Al-Burtomani, S.K.S., Suliman, F.O.: Experimental and theoretical study of the inclusion complexes of epinephrine with β-cyclodextrin, 18-crown-6 and cucurbit[7]uril. New J. Chem. (2018). https://doi.org/10.1039/c7nj04766e

    Article  Google Scholar 

  19. Lagona, J., Mukhopadhyay, P., Chakrabarti, S., Isaacs, L.: The cucurbit[n]uril family. Angew. Chemie Int. Ed. 44, 4844–4870 (2005). https://doi.org/10.1002/anie.200460675

    Article  CAS  Google Scholar 

  20. Liu, S., Ruspic, C., Mukhopadhyay, P., Chakrabarti, S., Zavalij, P.Y., Isaacs, L.: The Cucurbit[n]uril family: prime components for self-sorting systems. J. Am. Chem. Soc. 127, 15959–15967 (2005)

    Article  CAS  PubMed  Google Scholar 

  21. Moghaddam, S., Yang, C., Rekharsky, M., Ko, Y.H., Kim, K., Inoue, Y., Gilson, M.K.: New ultrahigh affinity host-guest complexes of cucurbit[7]uril with bicyclo[2.2.2]octane and adamantane guests: thermodynamic analysis and evaluation of M2 affinity calculations. J. Am. Chem. Soc. 133, 3570–3581 (2011). https://doi.org/10.1021/ja109904u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cao, L., Šekutor, M., Zavalij, P.Y., Mlinaric̈-Majerski, K., Glaser, R., Isaacs, L., Sekutor, M., Zavalij, P.Y., Mlinaric-Majerski, K., Glaser, R., Isaacs, L., Mlinarić-Majerski, K., Glaser, R., Isaacs, L.: Cucurbit[7]uril × guest pair with an attomolar dissociation constant. Angew. Chemie Int. Ed. 53, 988–993 (2014). https://doi.org/10.1002/anie.201309635

    Article  CAS  Google Scholar 

  23. Mueller, S.W., Maclaren, R.: Chap. 2 Vasopressors and inotropes. In: Hemmings, H.C., Egan, T.D. (eds.) Pharmacology and Physiology for Anesthesia, pp. 390–404. W.B. Saunders, Philadelphia (2014)

    Google Scholar 

  24. Kopysov, V., Makarov, A., Boyarkin, O.V.: Identification of isomeric ephedrines by cold ion UV spectroscopy: toward practical implementation. Anal. Chem. 89, 544–547 (2017). https://doi.org/10.1021/acs.analchem.6b04182

    Article  CAS  PubMed  Google Scholar 

  25. Pumera, M., Jelinek, I., Jindrich, J., Benada, O.: Β-Cyclodextrin-modified monolithic stationary phases for capillary electrochromatography and nano-hplc chiral analysis of ephedrine and ibuprofen. J. Liq. Chromatogr. Relat. Technol. 25, 2473–2484 (2002). https://doi.org/10.1081/JLC-120014268

    Article  CAS  Google Scholar 

  26. Huang, W.X., Xu, H., Fazio, S.D., Vivilecchia, R.V.: Chiral separation of primary amino compounds using a non-chiral crown ether with beta-cyclodextrin by capillary electrophoresis. J. Chromatogr. B 695, 157–162 (1997)

    Article  CAS  Google Scholar 

  27. Gingter, S., Ritter, H.: Chiral recognition of ephedrine: hydrophilic polymers bearing β-cyclodextrin moieties as chiral sensitive host molecules. Beilstein J. Org. Chem. 7, 1516–1519 (2011). https://doi.org/10.3762/bjoc.7.177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wszelaka-Rylik, M.: Thermodynamics of β-cyclodextrin–ephedrine inclusion complex formation and covering of nanometric calcite with these substances. J. Therm. Anal. Calorim. 127, 1825–1834 (2017). https://doi.org/10.1007/s10973-016-5467-x

    Article  CAS  Google Scholar 

  29. Suliman, F.O., Al-Burtomani, S.K.S.: Inclusion complexes of norepinephrine with β-cyclodextrin, 18-crown-6 and cucurbit[7]uril: experimental and molecular dynamics study. RSC Adv. 7, 9888–9901 (2017). https://doi.org/10.1039/C6RA28638K

    Article  Google Scholar 

  30. Chen, W., Chang, C.E., Gilson, M.K.: Calculation of cyclodextrin binding affinities: energy, entropy, and implications for drug design. Biophys. J. 87, 3035–3049 (2004). https://doi.org/10.1529/biophysj.104.049494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. El-barghouthi, M.I., Assaf, K.I., Rawashdeh, A.M.M.: Molecular dynamics of methyl viologen-cucurbit [n] uril complexes in aqueous solution. J. Chem. Theory Comput. 6(4), 984–992 (2010)

    Article  CAS  Google Scholar 

  32. Assaf, K.I., Florea, M., Antony, J., Henriksen, N.M., Yin, J., Hansen, A., Qu, Z., Sure, R., Klapstein, D., Gilson, M.K., Grimme, S., Nau, W.M.: The HYDROPHOBE challenge: a joint experimental and computational study on the host-guest binding of hydrocarbons to cucurbiturils allowing explicit evaluation of guest hydration free energy contributions. J. Phys. Chem. B. 121, 11144–11162 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim, J., Jung, I., Kim, S., Lee, E., Kang, J., Sakamoto, S., Yamaguchi, K., Kim, K., Hyojadong, S., Korea, R.: New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit [n] uril (n) 5, 7, and 8) smart supramolecules and Department of Chemistry Pohang University of Science and Technology Chemical. Anal. J. Am. Chem. Soc. 50, 31–36 (2000)

    CAS  Google Scholar 

  34. K, C.S., Maverick, B.Y.E., Seller, P., Schweizer, W.B., Dunrrz, J.D.: Acta Cryst. B36, 615–620 (1980)

    Google Scholar 

  35. Aree, T., Chaichit, N.: Crystal structure of beta-cyclodextrin-dimethylsulfoxide inclusion complex. Carbohydr. Res. 337, 2487–2494 (2002). https://doi.org/10.1016/S0008-6215(02)00335-X

    Article  CAS  PubMed  Google Scholar 

  36. Stewart, J.J.P.: Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J. Mol. Model. 19, 1–32 (2013). https://doi.org/10.1007/s00894-012-1667-x

    Article  CAS  PubMed  Google Scholar 

  37. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J.: Autodock 4.2 (2009)

  38. Boys, S.F., Bernardi, F.: The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553–566 (1970)

    Article  CAS  Google Scholar 

  39. Bowers, K.J., Chow, E., Xu, H., Dror, R.O., Eastwood, M.P., Gregersen, B.A., Klepeis, J.L., Kolossvary, I., Moraes, M.A., Sacerdoti, F.D., Salmon, J.K., Shan, Y., Shaw, D.E.: Scalable algorithms for molecular dynamics simulations on commodity clusters. In: Proceedings of the ACM/IEEE conference on Supercomputing (SC’06): p. 84., Tampa, Florida (2006)

  40. Shaw, D.E.: Desmond Molecular Dynamics System, New York (2009)

  41. Mokhtar, M.S., Suliman, F.E.O., Elbashir, A.A.: Experimental and molecular modeling investigations of inclusion complexes of imazapyr with 2-hydroxypropyl(β/γ) cyclodextrin. J. Mol. Liq. 262, 504–513 (2018). https://doi.org/10.1016/j.molliq.2018.04.088

    Article  CAS  Google Scholar 

  42. Mura, P.: Journal of Pharmaceutical and Biomedical Analysis Analytical techniques for characterization of cyclodextrin complexes in aqueous solution: a review. J. Pharm. Biomed. Anal. 101, 238–250 (2014). https://doi.org/10.1016/j.jpba.2014.02.022

    Article  CAS  PubMed  Google Scholar 

  43. Álvaro-Muñoz, T., López-Arbeloa, F., Pérez-Pariente, J., Gómez-Hortigüela, L.: (1 R,2 S)-ephedrine: a new self-assembling chiral template for the synthesis of aluminophosphate frameworks. J. Phys. Chem. C. 118, 3069–3077 (2014). https://doi.org/10.1021/jp411124d

    Article  CAS  Google Scholar 

  44. Bernardo-Maestro, B., Roca-Moreno, M.D., López-Arbeloa, F., Pérez-Pariente, J., Gómez-Hortigüela, L.: Supramolecular chemistry of chiral (1R,2S)-ephedrine confined within the AFI framework as a function of the synthesis conditions. Catal. Today. 277, 9–20 (2016). https://doi.org/10.1016/j.cattod.2015.10.010

    Article  CAS  Google Scholar 

  45. Mokhtar, M.S., Suliman, F.O., Elbashir, A.A.: The binding interaction of imazapyr with cucurbit[n]uril (n = 6–8): combined experimental and molecular modeling study. Spectrochim. Acta A (2018). https://doi.org/10.1016/j.saa.2018.01.007

    Article  Google Scholar 

  46. Uyar, T., Hunt, M.A., Gracz, H.S., Tonelli, A.E.: Crystalline cyclodextrin inclusion compounds formed with aromatic guests: Guest-dependent stoichiometries and hydration-sensitive crystal structures. Cryst. Growth Des. 6, 1113–1119 (2006). https://doi.org/10.1021/cg050500&%23x002B;

    Article  CAS  Google Scholar 

  47. Lu, T.: Solid-state inclusion compounds of small amphiphilic molecules (C). New J. Chem. 29, 1335–1341 (2005)

    Article  CAS  Google Scholar 

  48. Cunha-Silva, L., Teixeira-Dias, J.J.C.: How humidity affects the solid-state inclusion of 2-phenoxyethanol in β-cyclodextrin: a comparison with β-cyclodextrin. New J. Chem. 28, 200–206 (2004). https://doi.org/10.1039/b309491j

    Article  CAS  Google Scholar 

  49. Li, S., Miao, X., Wyman, I.W., Li, Y., Zheng, Y., Wang, Y., Macartney, D.H., Wang, R.: High-affinity host–guest complex of cucurbit[7]uril with a bis(thiazolium) salt. RSC Adv. 5, 56110–56115 (2015). https://doi.org/10.1039/C5RA04468E

    Article  CAS  Google Scholar 

  50. Li, S., Yin, H., Wyman, I.W., Zhang, Q., Macartney, D.H., Wang, R.: Encapsulation of Vitamin B1and its phosphate derivatives by cucurbit[7]uril: tunability of the binding site and affinity by the presence of phosphate groups. J. Org. Chem. 81, 1300–1303 (2016). https://doi.org/10.1021/acs.joc.5b02666

    Article  CAS  PubMed  Google Scholar 

  51. Buchelnikov, A.S., Hernández Santiago, A.A., Starodub, M.A., Mosunov, A.A., Parkinson, J.A., Evstigneev, M.P.: Generalized shape-independent approach to studying molecular hetero-assembly in solution using NMR diffusometry. J. Mol. Liq. 265, 88–95 (2018). https://doi.org/10.1016/j.molliq.2018.05.106

    Article  CAS  Google Scholar 

  52. Kasprzak, A., Borys, K.M., Molchanov, S., Adamczyk-Woźniak, A.: Spectroscopic insight into supramolecular assemblies of boric acid derivatives and β-cyclodextrin. Carbohydr. Polym. 198, 294–301 (2018). https://doi.org/10.1016/J.CARBPOL.2018.06.085

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Central Analytical and Applied Research Unit (CAARU) at College of Science for the technical support. SK-Burtomani would like to thank SQU for the leave of absence and for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to FakhrEldin O. Suliman.

Ethics declarations

Conflicts of interest

There are no conflicts of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1874 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Burtomani, S.K.S., Suliman, F.O. Deciphering ephedrine inclusion complexes with β-cyclodextrin, 18-crown-6 and cucurbit[7]uril using spectral and molecular modeling methods. J Incl Phenom Macrocycl Chem 93, 157–172 (2019). https://doi.org/10.1007/s10847-018-0866-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-018-0866-1

Keywords

Navigation