Skip to main content
Log in

Inclusion complexes of cyclodextrins with hydrophobic ionic liquids

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Two imidazolium-based hexafluorophosphate ionic liquids (ILs), 1-butyl-3-methylimidazolium hexafluorophosphate and 1-dodecyl-3-methylimidazolium hexafluorophosphate, were used to form inclusion complexes (ICs) with α- and β-cyclodextrins (CDs). Formation of the ICs of each CD with each IL was confirmed by the appearance of a characteristic peak in the UV region. Characterisation of the ICs by NMR and FT-IR spectroscopy provided information about the interactions between the host and guest molecules and the structure of the ICs. Temperature-dependent particle size analysis by dynamic light scattering suggested that the size of the host and the guest governs their stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bender, M.L., Komiyama, M.: Cyclodextrin Chemistry. Springer, Berlin (1978)

    Book  Google Scholar 

  2. Loftsson, T., Duchêne, D.: Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 329, 1–11 (2007). https://doi.org/10.1016/j.ijpharm.2006.10.044

    Article  CAS  PubMed  Google Scholar 

  3. Messner, M., Kurkov, S.V., Jansook, P., Loftsson, T.: Self-assembled cyclodextrin aggregates and nanoparticles. Int. J. Pharm. 387, 199–208 (2010). https://doi.org/10.1016/j.ijpharm.2009.11.035

    Article  CAS  PubMed  Google Scholar 

  4. Sabadini, E., Cosgrove, T., Egídio, F.D.C.: Solubility of cyclomaltooligosaccharides (cyclodextrins) in H2O and D2O: a comparative study. Carbohydr. Res. 341, 270–274 (2006). https://doi.org/10.1016/j.carres.2005.11.004

    Article  CAS  PubMed  Google Scholar 

  5. Chung, J.W., Kang, T.J., Kwak, S.-Y.: Guest-free self-assembly of α-cyclodextrins leading to channel-type nanofibrils as mesoporous framework. Langmuir. 23, 12366–12370 (2007). https://doi.org/10.1021/la702052h

    Article  CAS  PubMed  Google Scholar 

  6. Bonini, M., Rossi, S., Karlsson, G., Almgren, M., Lo Nostro, P., Baglioni, P.: Self-assembly of β-cyclodextrin in water. Part 1: Cryo-TEM and dynamic and static light scattering. Langmuir 22, 1478–1484 (2006). https://doi.org/10.1021/la052878f

    Article  CAS  PubMed  Google Scholar 

  7. Coleman, A.W., Nicolis, I., Keller, N., Dalbiez, J.P.: Aggregation of cyclodextrins: an explanation of the abnormal solubility of β-cyclodextrin. J. Incl. Phenom. Mol. Recognit. Chem. 13, 139–143 (1992). https://doi.org/10.1007/BF01053637

    Article  CAS  Google Scholar 

  8. Saenger, W.: Cyclodextrin inclusion compounds in research and industry. Angew. Chemie Int. Ed. 19, 344–362 (1980). https://doi.org/10.1002/anie.198003441

    Article  Google Scholar 

  9. Wenz, G.: Cyclodextrins as building blocks for supramolecular structures and functional units. Angew. Chemie Int. Ed. 33, 803–822 (1994). https://doi.org/10.1002/anie.199408031

    Article  Google Scholar 

  10. Messner, M., Kurkov, S.V., Flavià-Piera, R., Brewster, M.E., Loftsson, T.: Self-assembly of cyclodextrins: the effect of the guest molecule. Int. J. Pharm. 408, 235–247 (2011). https://doi.org/10.1016/j.ijpharm.2011.02.008

    Article  CAS  PubMed  Google Scholar 

  11. Antoniou, E., Voudouris, P., Larsen, A., Loppinet, B., Vlassopoulos, D., Pastoriza-Santos, I., Liz-Marzán, L.M.: Static and dynamic plasmon-enhanced light scattering from dispersions of polymer-grafted silver nanoprisms in the bulk and near solid surfaces. J. Phys. Chem. C. 116, 3888–3896 (2012). https://doi.org/10.1021/jp2076534

    Article  CAS  Google Scholar 

  12. Ondo, D., Tkadlecová, M., Dohnal, V., Rak, J., Kvíčala, J., Lehmann, J.K., Heintz, A., Ignatiev, N.: Interaction of ionic liquids ions with natural cyclodextrins. J. Phys. Chem. B. 115, 10285–10297 (2011). https://doi.org/10.1021/jp205039g

    Article  CAS  PubMed  Google Scholar 

  13. Saenger, W.: Crystal packing patterns of cyclodextrin inclusion complexes. J. Incl. Phenom. 2, 445 (1984)

    Article  CAS  Google Scholar 

  14. McMullan, R.K., Saenger, W., Fayos, J., Mootz, D.: Topography of cyclodextrin inclusion complexes. Carbohydr. Res. 31, 37–46 (1973). https://doi.org/10.1016/S0008-6215(00)82315-0

    Article  CAS  Google Scholar 

  15. Gao, Y., Li, Z., Du, J., Han, B., Li, G., Hou, W.G., Shen, D., Zheng, L., Zhang, G.: Preparation and characterization of inclusion complexes of β-cyclodextrin with ionic liquid. Chem. A Eur. J. 11, 5875–5880 (2005). https://doi.org/10.1002/chem.200500120

    Article  CAS  Google Scholar 

  16. Yuan, C., Guo, J., Yan, F.: Shape memory poly(ionic liquid) gels controlled by host-guest interaction with β-cyclodextrin. Polym. (UK) 55, 3431–3435 (2014). https://doi.org/10.1016/j.polymer.2014.03.024

    Article  CAS  Google Scholar 

  17. Li, N., Liu, J., Zhao, X., Gao, Y., Zheng, L., Zhang, J., Yu, L.: Complex formation of ionic liquid surfactant and β-cyclodextrin. Colloids Surf. A 292, 196–201 (2007). https://doi.org/10.1016/j.colsurfa.2006.06.023

    Article  CAS  Google Scholar 

  18. He, Y., Shen, X.: Interaction between β-cyclodextrin and ionic liquids in aqueous solutions investigated by a competitive method using a substituted 3H-indole probe. J. Photochem. Photobiol. A 197, 253–259 (2008). https://doi.org/10.1016/j.jphotochem.2008.01.001

    Article  CAS  Google Scholar 

  19. Roy, M.N., Roy, M.C., Roy, K.: Investigation of an inclusion complex formed by ionic liquid and β-cyclodextrin through hydrophilic and hydrophobic interactions. RSC Adv. 5, 56717–56723 (2015). https://doi.org/10.1039/C5RA09823H

    Article  CAS  Google Scholar 

  20. Godínez, L.A., Schulze-Fiehn, B.G., Patel, S., Criss, C.M., Evanseck, J.D., Kaifer, A.E.: Observation and interpretation of anomalous inorganic anion binding with α- and β-cyclodextrins in aqueous media. Supramol. Chem. 8, 17–22 (1996). https://doi.org/10.1080/10610279608233964

    Article  Google Scholar 

  21. Gao, Y., Li, Z., Du, J., Han, B., Li, G., Hou, W., Shen, D., Zheng, L., Zhang, G.: Preparation and characterization of inclusion complexes of β-cyclodextrin with ionic liquid. Chem. A 11, 5875–5880 (2005). https://doi.org/10.1002/chem.200500120

    Article  CAS  Google Scholar 

  22. Gao, Y., Zhao, X., Dong, B., Zheng, L., Li, N., Zhang, S.: Inclusion complexes of β-cyclodextrin with ionic liquid surfactants. J. Phys. Chem. B 110, 8576–8581 (2006). https://doi.org/10.1021/jp057478f

    Article  CAS  PubMed  Google Scholar 

  23. Sarkar, K., Roy, N., Ghosh, R., Roy, M.N.: Subsistence of host guest inclusion complexes of biologically active molecules with ionic liquid probed by physicochemical exploration. Int. J. Innov. Eng. Sci. 2, 6–20 (2018)

    Google Scholar 

  24. Markuszewski, M.J., Stepnowski, P., Marszałł, M.P.: Capillary electrophoretic separation of cationic constituents of imidazolium ionic liquids. Electrophoresis. 25, 3450–3454 (2004). https://doi.org/10.1002/elps.200406074

    Article  CAS  PubMed  Google Scholar 

  25. Hui, B.Y., Raoov, M., Zain, N.N.M., Mohamad, S., Osman, H.: Combination of cyclodextrin and ionic liquid in analytical chemistry: current and future perspectives. Crit. Rev. Anal. Chem. 47, 454–467 (2017). https://doi.org/10.1080/10408347.2017.1320936

    Article  CAS  PubMed  Google Scholar 

  26. Freire, M.G., Santos, L.M.N.B.F., Fernandes, A.M., Coutinho, J.A.P., Marrucho, I.M.: An overview of the mutual solubilities of water-imidazolium-based ionic liquids systems. Fluid Phase Equilib. 261, 449–454 (2007). https://doi.org/10.1016/j.fluid.2007.07.033

    Article  CAS  Google Scholar 

  27. Consorti, C.S., Suarez, P.A.Z., De Souza, R.F., Burrow, R.A., Farrar, D.H., Lough, A.J., Loh, W., Da Suva, L.H.M., Dupont, J.: Identification of 1,3-dialkylimidazoIium salt supramolecular aggregates in solution. J. Phys. Chem. B 109, 4341–4349 (2005). https://doi.org/10.1021/jp0452709

    Article  CAS  PubMed  Google Scholar 

  28. Roy, A., Saha, S., Datta, B., Roy, M.N.: Insertion behavior of imidazolium and pyrrolidinium based ionic liquids into α and β-cyclodextrins: mechanism and factors leading to host-guest inclusion complexes. RSC Adv. 6, 100016–100027 (2016). https://doi.org/10.1039/c6ra19684e

    Article  CAS  Google Scholar 

  29. Roy, A., Roy, M.N.: Cage to cage study of ionic liquid and cyclic oligosaccharides to form inclusion complexes. RSC Adv. 7, 40803–40812 (2017). https://doi.org/10.1039/C7RA08397A

    Article  CAS  Google Scholar 

  30. Barman, B.K., Rajbanshi, B., Yasmin, A., Roy, M.N.: Exploring inclusion complexes of ionic liquids with α- and β-cyclodextrin by NMR, IR, mass, density, viscosity, surface tension and conductance study. J. Mol. Struct. 1159, 205–215 (2018). https://doi.org/10.1016/j.molstruc.2018.01.062

    Article  CAS  Google Scholar 

  31. Eftink, M.R., Andy, M.L., Bystrom, K., Perlmutter, H.D., Kristol, D.S.: Cyclodextrin inclusion complexes: studies of the variation in the size of alicyclic guests. J. Am. Chem. Soc. 111, 6765–6772 (1989). https://doi.org/10.1021/ja00199a041

    Article  CAS  Google Scholar 

  32. Wong, J.W., Yuen, K.H.: Inclusion complexation of artemisinin with α-, β-, and γ-cyclodextrins. Drug Dev. Ind. Pharm. 29, 1035–1044 (2003). https://doi.org/10.1081/DDC-120025460

    Article  CAS  PubMed  Google Scholar 

  33. Mohamed, M.H., Wilson, L.D., Headley, J.V., Peru, K.M.: Thermodynamic properties of inclusion complexes between β-cyclodextrin and naphthenic acid fraction components. Energy Fuels 29, 3591–3600 (2015). https://doi.org/10.1021/acs.energyfuels.5b00289

    Article  CAS  Google Scholar 

  34. Lee, S.H., Ha, S.H., Ha, S.-S., Jin, H.-B., You, C.-Y., Koo, Y.-M.: Magnetic behavior of mixture of magnetic ionic liquid [bmim]FeCl4 and water. J. Appl. Phys. 101, 09J102 (2007). https://doi.org/10.1063/1.2710462

    Article  CAS  Google Scholar 

  35. Tanabe, I., Kurawaki, Y., Morisawa, Y., Ozaki, Y.: Electronic absorption spectra of imidazolium-based ionic liquids studied by far-ultraviolet spectroscopy and quantum chemical calculations. Phys. Chem. Chem. Phys. 18, 22526–22530 (2016). https://doi.org/10.1039/C6CP02930B

    Article  CAS  PubMed  Google Scholar 

  36. Liu, L., Zhao, N., Scherman, O.A.: Ionic liquids as novel guests for cucurbit[6]uril in neutral water. Chem. Commun. (2008). https://doi.org/10.1039/b716889f

    Article  Google Scholar 

  37. Hendy, G.M., Breslin, C.B.: A spectrophotometric and NMR study on the formation of an inclusion complex between dopamine and a sulfonated cyclodextrin host. J. Electroanal. Chem. 661, 179–185 (2011). https://doi.org/10.1016/j.jelechem.2011.07.041

    Article  CAS  Google Scholar 

  38. Nicolini, J., Venturini, C.D.G., Andreaus, J., Machado, C., Machado, V.G.: Interaction of cyclodextrins with Brooker’s merocyanine in aqueous solution. Spectrosc. Lett. 42, 35–41 (2009). https://doi.org/10.1080/00387010802425142

    Article  CAS  Google Scholar 

  39. Nicolescu, A., Balam, M., Georgescu, E., Georgescu, F., Ursu, L., Simionescu, B.C., Filip, P., Deleanu, C.: Benzimidazolium-cyclodextrin inclusion complexes. Rev. Chim. 64, 451–455 (2013)

    CAS  Google Scholar 

  40. Pinto, L.M.A., Fraceto, L.F., Santana, M.H.A., Pertinhez, T.A., Junior, S.O., Paula, E., De: Physico-chemical characterization of benzocaine-β-cyclodextrin inclusion complexes. J. Pharm. Biomed. Anal. 39, 956–963 (2005). https://doi.org/10.1016/j.jpba.2005.06.010

    Article  CAS  PubMed  Google Scholar 

  41. Li, J., Mai, Y., Yan, D., Chen, Q.: Preparation and characterization of the crystalline inclusion complexes of α and γ-cyclodextrins with poly(butylene carbonate). Colloid Polym. Sci. 281, 267–274 (2003). https://doi.org/10.1007/s00396-002-0770-4

    Article  CAS  Google Scholar 

  42. Laurenczy, G., Dyson, P.J.: Determination of the viscosity of the ionic liquids [bmim][PF6] and [bmim][TF2N] under high CO2 gas pressure using sapphire NMR tubes. Zeitschrift fur Naturforsch. 63b, 681–684 (2008)

    Google Scholar 

Download references

Acknowledgements

Financial support was provided by a sub-project (CPSF-231) from the Higher Education Quality Enhancement Project of the University Grants Commission of Bangladesh financed by World Bank and the Government of Bangladesh. NMR measurements were obtained from the Wazed Miah Science Research Center at Jahangirnagar University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Abu Bin Hasan Susan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 14688 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atahar, A., Mollah, M.Y.A., Rahman, M.M. et al. Inclusion complexes of cyclodextrins with hydrophobic ionic liquids. J Incl Phenom Macrocycl Chem 92, 301–309 (2018). https://doi.org/10.1007/s10847-018-0848-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-018-0848-3

Keywords

Navigation