Skip to main content
Log in

Carbonyl and carboxylate crosslinked cyclodextrin as a nanocarrier for resveratrol: in silico, in vitro and in vivo evaluation

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The purpose of the study was to explore the effect of different type of crosslinked cyclodextrins for the delivery of poorly soluble, photosensitive drug, resveratrol. Crosslinkers, diphenyl carbonate and pyromellitic dianhydride were used to prepare carbonyl (NS-I) and carboxylate (NS-II) crosslinked cyclodextrin respectively. The solubility and in silico molecular interaction of resveratrol with these NS at different crosslinker ratio were studied. The results showed enhanced solubility and better interaction of resveratrol with nanosponges prepared with 1:4 Cyclodextrin: crosslinker ratio. The drug-loaded nanosponges (RES-NS-I and II) prepared using 1:4 crosslinked NS-I and II were characterized using DSC, PXRD, SEM, FTIR and evaluated for particle size, zeta potential, photodegradation, in vitro drug release, in vitro cytotoxicity and in vivo oral bioavailability in rats. Physical characterization confirmed the molecular inclusion of drug with NS. The release of the drug was increased to 2.5–3 folds in the dissolution medium, with initial drug release faster with RES-NS-II. Photostability was enhanced to 2.3 fold with RES-NS-II. The cytotoxicity test exhibited 1.5 fold reduction in IC50 with drug-loaded NS. RES-NS-II exhibited 2.5 fold increase in Cmax and fourfold decrease in Tmax. Carboxylate crosslinked Cyclodextrin using pyromellitic dianhydride proves to be an effective nanocarrier for resveratrol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

RES:

Resveratrol

NS:

Nanosponge

CD:

Cyclodextrin

References

  1. Siddiqui, I.A., Sanna, V., Ahmad, N., Sechi, M., Mukhtar, H.: Resveratrol nanoformulation for cancer prevention and therapy. Ann. N. Y. Acad. Sci. 1348(1), 20–31 (2015)

    Article  CAS  Google Scholar 

  2. Sanna, V., Siddiqui, I.A., Sechi, M., Mukhtar, H.: Resveratrol-loaded nanoparticles based on poly (epsilon-caprolactone) and poly (d, l-lactic-co-glycolic acid)–poly (ethylene glycol) blend for prostate cancer treatment. Mol. Pharm. 10(10), 3871–3881 (2013)

    Article  CAS  Google Scholar 

  3. Summerlin, N., Soo, E., Thakur, S., Qu, Z., Jambhrunkar, S., Popat, A.: Resveratrol nanoformulations: challenges and opportunities. Int. J. Pharm. 479(2), 282–290 (2015)

    Article  CAS  Google Scholar 

  4. Dong, Q., Yuan, H.-L., Qian, J.-J., Zhang, C.-Y., Chen, W.-D.: Preparation and in vitro–in vivo characterization of trans-resveratrol nanosuspensions. Bio-Med. Mater. Eng. 29(3), 333–345 (2018)

    Article  CAS  Google Scholar 

  5. Nassir, A.M., Shahzad, N., Ibrahim, I.A., Ahmad, I., Md, S., Ain, M.R.: Resveratrol-loaded PLGA nanoparticles mediated programmed cell death in prostate cancer cells. Saudi Pharm. J. 26(6), 876–885 (2018)

    Article  Google Scholar 

  6. Shen, Y., Cao, B., Snyder, N.R., Woeppel, K.M., Eles, J.R., Cui, X.T.: ROS responsive resveratrol delivery from LDLR peptide conjugated PLA-coated mesoporous silica nanoparticles across the blood–brain barrier. J. Nanobiotechnol. 16(1), 13 (2018)

    Article  Google Scholar 

  7. Pinho, E., Grootveld, M., Soares, G., Henriques, M.: Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohydr. Polym. 101, 121–135 (2014)

    Article  CAS  Google Scholar 

  8. Lu, Z., Cheng, B., Hu, Y., Zhang, Y., Zou, G.: Complexation of resveratrol with cyclodextrins: solubility and antioxidant activity. Food Chem. 113(1), 17–20 (2009)

    Article  CAS  Google Scholar 

  9. Duarte, A., Martinho, A., Luís, Â, Figueiras, A., Oleastro, M., Domingues, F.C., Silva, F.: Resveratrol encapsulation with methyl-β-cyclodextrin for antibacterial and antioxidant delivery applications. LWT-Food Sci. Technol. 63(2), 1254–1260 (2015)

    Article  CAS  Google Scholar 

  10. Troche-Pesqueira, E., Pérez-Juste, I., Navarro-Vázquez, A., Cid, M.M.: A β-cyclodextrin–resveratrol inclusion complex and the role of geometrical and electronic effects on its electronic induced circular dichroism. RSC Adv. 3(26), 10242–10250 (2013)

    Article  CAS  Google Scholar 

  11. Swaminathan, S., Cavalli, R., Trotta, F.: Cyclodextrin-based nanosponges: a versatile platform for cancer nanotherapeutics development. Wiley Interdisc. Rev. 8(4), 579–601 (2016)

    CAS  Google Scholar 

  12. Trotta, F.: Cyclodextrin nanosponges and their applications. In: Cyclodextrins in Pharmaceutics, Cosmetics, and Biomedicine: Current and Future Industrial Applications, pp. 323–342. Wiley, New York (2011)

    Chapter  Google Scholar 

  13. Ansari, K.A., Vavia, P.R., Trotta, F., Cavalli, R.: Cyclodextrin-based nanosponges for delivery of resveratrol: in vitro characterisation, stability, cytotoxicity and permeation study. Aaps Pharmscitech 12(1), 279–286 (2011)

    Article  CAS  Google Scholar 

  14. Swaminathan, S., Pastero, L., Serpe, L., Trotta, F., Vavia, P., Aquilano, D., Trotta, M., Zara, G., Cavalli, R.: Cyclodextrin-based nanosponges encapsulating camptothecin: physicochemical characterization, stability and cytotoxicity. Eur. J. Pharm. Biopharm. 74(2), 193–201 (2010)

    Article  CAS  Google Scholar 

  15. Rao, M., Bajaj, A., Khole, I., Munjapara, G., Trotta, F.: In vitro and in vivo evaluation of β-cyclodextrin-based nanosponges of telmisartan. J. Incl. Phenom. Macrocycl. Chem. 77(1–4), 135–145 (2013)

    Article  CAS  Google Scholar 

  16. Anandam, S., Selvamuthukumar, S.: Fabrication of cyclodextrin nanosponges for quercetin delivery: physicochemical characterization, photostability, and antioxidant effects. J. Mater. Sci. 49(23), 8140–8153 (2014)

    Article  CAS  Google Scholar 

  17. Shringirishi, M., Mahor, A., Gupta, R., Prajapati, S.K., Bansal, K., Kesharwani, P.: Fabrication and characterization of nifedipine loaded β-cyclodextrin nanosponges: an in vitro and in vivo evaluation. J. Drug Deliv. Sci. Technol. 41, 344–350 (2017)

    Article  CAS  Google Scholar 

  18. Shende, P.K., Trotta, F., Gaud, R., Deshmukh, K., Cavalli, R., Biasizzo, M.: Influence of different techniques on formulation and comparative characterization of inclusion complexes of ASA with β-cyclodextrin and inclusion complexes of ASA with PMDA cross-linked β-cyclodextrin nanosponges. J. Incl. Phenom. Macrocycl. Chem. 74(1–4), 447–454 (2012)

    Article  CAS  Google Scholar 

  19. Shende, P.K., Gaud, R., Bakal, R., Patil, D.: Effect of inclusion complexation of meloxicam with β-cyclodextrin-and β-cyclodextrin-based nanosponges on solubility, in vitro release and stability studies. Colloids Surf. B 136, 105–110 (2015)

    Article  CAS  Google Scholar 

  20. Shende, P., Chaphalkar, R., Deshmukh, K., Gaud, R.: Physicochemical investigation of engineered nanosuspensions containing model drug, lansoprazole. J. Dispersion Sci. Technol. 37(4), 504–511 (2016)

    Article  CAS  Google Scholar 

  21. Pushpalatha, R., Selvamuthukumar, S., Kilimozhi, D.: Cross-linked, cyclodextrin-based nanosponges for curcumin delivery-physicochemical characterization, drug release, stability and cytotoxicity. J. Drug Deliv. Sci. Technol. 45, 45–53 (2018)

    Google Scholar 

  22. Pushpalatha, R., Selvamuthukumar, S., Kilimozhi, D.: Hierarchy analysis of different cross-linkers used for the preparation of cross-linked cyclodextrin as drug nanocarriers. Chem. Eng. Commun. 205(6), 759–771 (2018)

    Article  CAS  Google Scholar 

  23. Trotta, F., Tumiatti, V., Cavalli, R., Rogero, C., Mognetti, B., Berta, G.: Cyclodextrin-based nanosponges as a vehicle for antitumoral drugs. WO 3656, A1 (2009)

    Google Scholar 

  24. Rao, M.R., Bhingole, R.C.: Nanosponge-based pediatric-controlled release dry suspension of Gabapentin for reconstitution. Drug Dev Ind Pharm 41(12), 2029–2036 (2015)

    Article  CAS  Google Scholar 

  25. Mele, A., Castiglione, F., Malpezzi, L., Ganazzoli, F., Raffaini, G., Trotta, F., Rossi, B., Fontana, A., Giunchi, G.: HR MAS NMR, powder XRD and Raman spectroscopy study of inclusion phenomena in βCD nanosponges. J. Incl. Phenom. Macrocycl. Chem. 69(3–4), 403–409 (2011)

    Article  CAS  Google Scholar 

  26. Gabr, M.M., Mortada, S.M., Sallam, M.A.: Carboxylate cross-linked cyclodextrin: a nanoporous scaffold for enhancement of rosuvastatin oral bioavailability. Eur. J. Pharm. Sci. 111, 1–12 (2018)

    Article  CAS  Google Scholar 

  27. Higuchi, T., Connors, K.A.: Phase solubility techniques. In: Advances Analytical Chemistry and Instrumentation, vol. 4. pp. 117–212. Wiley, New York (1965)

    Google Scholar 

  28. Swaminathan, S., Vavia, P., Trotta, F., Torne, S.: Formulation of betacyclodextrin based nanosponges of itraconazole. J. Incl. Phenom. Macrocycl. Chem. 57(1–4), 89–94 (2007)

    Article  CAS  Google Scholar 

  29. Denizot, F., Lang, R.: Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods 89(2), 271–277 (1986)

    Article  CAS  Google Scholar 

  30. Li, T.-P., Wong, W.-P., Chen, L.-C., Su, C.-Y., Chen, L.-G., Liu, D.-Z., Ho, H.-O., Sheu, M.-T.: Physical and pharmacokinetic characterizations of trans-resveratrol (t-Rev) encapsulated with self-assembling lecithin-based mixed polymeric micelles (sa LMPMs). Sci. Rep. 7(1), 10674 (2017)

    Article  Google Scholar 

  31. Trotta, F., Zanetti, M., Cavalli, R.: Cyclodextrin-based nanosponges as drug carriers. Beilstein J. Org. Chem. 8, 2091 (2012)

    Article  CAS  Google Scholar 

  32. Venuti, V., Rossi, B., Mele, A., Melone, L., Punta, C., Majolino, D., Masciovecchio, C., Caldera, F., Trotta, F.: Tuning structural parameters for the optimization of drug delivery performance of cyclodextrin-based nanosponges. Expert Opin. Drug Deliv. 14(3), 331–340 (2017)

    Article  CAS  Google Scholar 

  33. Dora, C.P., Trotta, F., Kushwah, V., Devasari, N., Singh, C., Suresh, S., Jain, S.: Potential of erlotinib cyclodextrin nanosponge complex to enhance solubility, dissolution rate, in vitro cytotoxicity and oral bioavailability. Carbohydr. Polym. 137, 339–349 (2016)

    Article  CAS  Google Scholar 

  34. Jeffrey, G.A., Jeffrey, G.A.: An Introduction to Hydrogen Bonding, vol. 32. Oxford University Press, New York (1997)

    Google Scholar 

  35. Brewster, M.E., Loftsson, T.: Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev. 59(7), 645–666 (2007)

    Article  CAS  Google Scholar 

  36. Löbenberg, R., Amidon, G.L.: Modern bioavailability, bioequivalence and biopharmaceutics classification system. New scientific approaches to international regulatory standards. Eur. J. Pharm. Biopharm. 50(1), 3–12 (2000)

    Article  Google Scholar 

  37. Torne, S., Darandale, S., Vavia, P., Trotta, F., Cavalli, R.: Cyclodextrin-based nanosponges: effective nanocarrier for Tamoxifen delivery. Pharm. Dev. Technol. 18(3), 619–625 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Pushpalatha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pushpalatha, R., Selvamuthukumar, S. & Kilimozhi, D. Carbonyl and carboxylate crosslinked cyclodextrin as a nanocarrier for resveratrol: in silico, in vitro and in vivo evaluation. J Incl Phenom Macrocycl Chem 92, 261–272 (2018). https://doi.org/10.1007/s10847-018-0843-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-018-0843-8

Keywords

Navigation